Sea sponge aquaculture
   HOME

TheInfoList



OR:

Sea sponge aquaculture is the process of farming
sea sponge Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through th ...
s under controlled conditions. It has been conducted in the world's oceans for centuries using a number of aquaculture techniques. There are many factors such as light, salinity, pH,
dissolved oxygen Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It ca ...
and the accumulation of waste products that influence the growth rate of sponges. The benefits of sea sponge aquaculture are realised as a result of its ease of establishment, minimum infrastructure requirements and the potential to be used as a source of income for populations living in developing countries. Sea sponges are produced on a commercial scale to be used as bath sponges or to extract biologically active compounds which are found in certain sponge species. Techniques such as the rope and mesh bag method are used to culture sponges independently or within an integrated multi-trophic aquaculture system setting. One of the only true sustainable sea sponges cultivated in the world occur in the region of
Micronesia Micronesia (, ) is a subregion of Oceania, consisting of about 2,000 small islands in the western Pacific Ocean. It has a close shared cultural history with three other island regions: the Philippines to the west, Polynesia to the east, and ...
, with a number of growing and production methods used to ensure and maintain the continued sustainability of these farmed species.


History

More than 8000 species of sea sponges live in oceanic and freshwater habitats.
Sponge Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate throug ...
fishing historically has been an important and lucrative industry, with yearly catches from years 1913 to 1938 regularly exceeding 181 tonnes and generating over 1 million U.S. dollars. However, this demand for sea sponges has seen catch rates peak and in 2003 the demand for bath sponges was 2,127 tonnes, with global production from harvesting only meeting a quarter of that amount. Early aquaculture research into optimising techniques for sea sponge aquaculture used a number of farming methods. However, commercial sponge farming was met with severe resistance and interference from sponge fisherman, who believed that their continued income was under threat. The opposition by commercial sponge farmers resulted in a low market penetration and poor consumer adoption of aquacultured sponge products.


Benefits

The benefits of commercial sponge aquaculture are apparent for those living in developing countries. In these countries, sponge aquaculture is both an easy and profitable business, which benefits the local community and environment through minimising both harvesting pressure on wild stocks and environmental damage.


Simple

Growing sponges is a simple process and requires little specialist knowledge. Furthermore, the ease of sponge aquaculture means that a whole family can be involved in the production process. This results in a profitable family business which conforms to traditional discourses of “family farms”, increasing the likelihood of sea sponge aquaculture adoption. In addition, it is common for sea sponge farms to be located close to family homes allowing for continual access, monitoring, modification and work to be completed on the farm.


Income generation

Sea sponge aquaculture also provides families with a continuous source of income year-round, which can be undertaken as a full-time commitment, or as a part-time job to supplement an existing income.


Uses


Bath sponges

The last two decades have seen a renewed interest in the potential for sponge aquaculture to contribute to supplying the growing global demand for bath sponges. Bath sponges are the most common use of aquacultured sea sponge today. Bath sponges can be defined as any sponge species possessing only
spongin Spongin, a modified type of collagen protein, forms the fibrous skeleton of most organisms among the phylum Porifera, the sponges. It is secreted by sponge cells known as spongocytes. Spongin gives a sponge its flexibility. True spongin is found ...
fibers – which are springy fibres made from collagen protein. Commercial uses for bath sponges range from cosmetic, bath, or industrial purposes, with the quality of the sponge based on analysing the quality of the sponge skeleton, with those possessing soft, durable and elastic fibres commanding the highest price.


Bioactive uses

The presence of
secondary metabolite Secondary metabolites, also called specialised metabolites, toxins, secondary products, or natural products, are organic compounds produced by any lifeform, e.g. bacteria, fungi, animals, or plants, which are not directly involved in the norma ...
s produced by symbiotic microorganisms within the sponge, enhances its growth and survival. Thousands of sponge derived secondary metabolites have been successfully isolated from sponges, with many metabolites having potential medicinal properties, such as cytotoxicity,
anti-inflammatory Anti-inflammatory is the property of a substance or treatment that reduces inflammation or swelling. Anti-inflammatory drugs, also called anti-inflammatories, make up about half of analgesics. These drugs remedy pain by reducing inflammation as o ...
and
anti-viral Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Unlike most antibiotics, antiviral drugs do ...
activity. Therefore, they have significant potential within the pharmaceutical industry as a means of generating novel drugs. These secondary metabolites, however, are often only present in trace amounts, with the only methods to use these metabolites as
therapeutics A therapy or medical treatment (often abbreviated tx, Tx, or Tx) is the attempted remediation of a health problem, usually following a medical diagnosis. As a rule, each therapy has indications and contraindications. There are many different ...
depending on the scale up of the compounds via chemical synthesis or aquaculture.


Menstrual sponges

While it is still something of a niche market, a few companies have begun to produce and market small sponges as reusable
feminine hygiene Feminine hygiene products are personal care products used during menstruation, vaginal discharge, and other bodily functions related to the vulva and vagina. Products that are used during menstruation may also be called menstrual hygiene product ...
products. They are marketed under the brand names Sea Pearls in the United States and Jam Sponge in the United Kingdom. The sponges are inserted into the
vagina In mammals, the vagina is the elastic, muscular part of the female genital tract. In humans, it extends from the vestibule to the cervix. The outer vaginal opening is normally partly covered by a thin layer of mucosal tissue called the hymen ...
in much the same way a
tampon A tampon is a menstrual product designed to absorb blood and vaginal secretions by insertion into the vagina during menstruation. Unlike a pad, it is placed internally, inside of the vaginal canal. Once inserted correctly, a tampon is held in ...
is, but when full are removed, cleaned, and reused, rather than discarded. The advantages of a reusable tampon alternative include cost-effectiveness and waste reduction. (Since sponges are biodegradable, even when a menstrual sponge's absorbent life is over it can be composted.) Some women are also concerned by the health risks associated with traditional tampons and feel it is healthier to use a natural material. While no known cases of
toxic shock syndrome Toxic shock syndrome (TSS) is a condition caused by bacterial toxins. Symptoms may include fever, rash, skin peeling, and low blood pressure. There may also be symptoms related to the specific underlying infection such as mastitis, osteomyeli ...
have been associated with the use of menstrual sponges, sponges are known, when not properly prepared, to contain sand, grit and bacteria, and thus the possibility of toxic shock syndrome should be considered. Sponges have a greater capacity for absorbing menstrual flow than most tampons; though they should still be changed at least every eight hours.


Factors that affect the growth of sponges


Salinity, pH, temperature and light

Sea sponges should be cultured at a salinity of 35ppt (salinity of seawater). Hypersalinity (high salt concentrations) in the immediate environment surrounding a sponge will dehydrate sponge cells, whereas a hyposaline (low salt concentration) environment dilutes the intracellular environment of the sponge. The pH of water must match that of seawater (pH 7.8–8.4) in order for sponge production to be maximized. Sponges are sensitive to temperature, and extreme fluctuations in ambient temperature can negatively affect the health of sea sponges. High temperatures lead to crashes in sponge cultures. Symbiotic bacteria that normally inhabit sea sponges start reproducing at an unsustainable rate when ambient temperature of the water increases by a few degrees. These bacteria then attack and destroy the sponge cells and tissue. It has been suggested that sponges should be cultured at water temperatures slightly below the ambient water temperature in the region the sponge has been originally isolated from. Photosynthetic
endosymbiont An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within ...
s inhabit many tropical sponges, and these require light to survive. Certain sponges as a result depend on light availability and intensity to achieve their nutritional needs. In some species however, light may lead to growth inhibition as they are sensitive to ultraviolet radiation. Other than when the sponge has associated photosynthetic bacteria, optimal sea sponge growth occurs in dark conditions.


Dissolved oxygen

Dissolved oxygen Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It ca ...
is absorbed through the aquiferous system. Oxygen in sea sponges is consumed at rates which range from 0.2–0.25 µmol O2h−1/cm3 of sponge volume.
Demosponges Demosponges (Demospongiae) are the most diverse class in the phylum Porifera. They include 76.2% of all species of sponges with nearly 8,800 species worldwide (World Porifera Database). They are sponges with a soft body that covers a hard, ...
maintained under laboratory conditions can also tolerate hypoxic conditions, for brief periods, which could reflect their adaptability to dissolved oxygen.


Waste removal

In closed culture systems some species of sponge may produce bioactive and cytotoxic metabolites which may rapidly build up and inhibit further sponge growth. However, biofilters are likely to be ineffective at removing secondary metabolites expelled from the sponge.
Adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
methods where biomolecules adhere to an
adsorbate Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a f ...
are likely to be an effective way of removing these compounds.


Diseases

Bath sponge disease outbreaks are often severe, having the potential to destroy both wild and aquacultured sponge populations. The underlying factors that result in disease outbreaks may be due to causative agents such as viruses, fungi, cyanobacteria and bacterial strains.


Site selection

When choosing a sea sponge aquaculture location, factors that promote growth and survival of the cultured sponge species must be considered. Sponges rely greatly on a passive flow of water to provide food, such as bacteria and microalgae, thus good water flow increases growth and quality of sponges. Higher than normal water flow rates could potentially damage farmed sponges. An ideal location for a sea sponge farm would be in an area that is sheltered, but which receives ample water flow and food availability to optimise sponge growth.


Methods of cultivation


The use of explants

Sponge aquaculture for spongin or metabolite production capitalises on the high regenerative abilities of the
totipotent Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
sponge cells by using explants (cut pieces of a parent sponge, which will then regrow into a full sponge) as a means of culturing sponges. Sponges have
indeterminate growth In biology and botany, indeterminate growth is growth that is not terminated in contrast to determinate growth that stops once a genetically pre-determined structure has completely formed. Thus, a plant that grows and produces flowers and fruit ...
, with maximum growth determined through environmental constraints rather than
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
. During the initial establishment of a farm, sponge explants will be chosen by their phenotypic characteristics of fast growth and high quality spongin or metabolites.


Integrated multi-trophic aquaculture

Intensive marine aquaculture in the last decade has increased considerably and resulted in considerable adverse environmental impacts. Large discharge volumes of organic matter from uneaten feed and excretory waste from aquacultured species has resulted in high levels of nutrients within coastal waters. Large quantities of nitrogen (~ 75%) excreted from bivalves,
salmon Salmon () is the common name for several commercially important species of euryhaline ray-finned fish from the family Salmonidae, which are native to tributaries of the North Atlantic (genus ''Salmo'') and North Pacific (genus '' Oncorhy ...
and shrimp, enter into the coastal environment, with the potential to develop algal blooms, and reduce dissolved oxygen in the water. An integrated aquaculture system consists of a number of species at different
trophic levels The trophic level of an organism is the position it occupies in a food web. A food chain is a succession of organisms that eat other organisms and may, in turn, be eaten themselves. The trophic level of an organism is the number of steps it i ...
of the
food chain A food chain is a linear network of links in a food web starting from producer organisms (such as grass or algae which produce their own food via photosynthesis) and ending at an apex predator species (like grizzly bears or killer whales), de ...
. Thus waste generating (fed organisms) such as fish and shrimp are coupled with extractive organisms such as abalone, sponges or sea urchins, as a mechanism of removing excess nutrient matter from the water column. Sea sponges have a distinct advantage as an extractive organism in an integrated multi-trophic aquaculture system, as they have the potential of acting as a bioremediator to remove both pathogenic bacteria and organic matter. The sponge '' Hymeniacidon perlevis'' has exhibited an excellent ability to remove
total organic carbon Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organi ...
(TOC) from seawater under integrated aquaculture conditions, and could be a potentially useful
bioremediation Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi, and plants), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluent ...
tool for aquaculture systems in regions where water pollution is high. Furthermore, the organic enrichment originating from fish farmed in the vicinity may stimulate sponge growth, resulting in more efficient sea sponge aquaculture.


Bath sponge aquaculture

Many commercial sea sponge farms situate their aquaculture sites in deeper waters (>5 m), to maximise the number of sponge explants that can be grown and increase productivity. Two main methods of bath sponge aquaculture have been trialled with sponges either being grown on a rope or inside a mesh bag.


Rope method

Survival for sponges farmed on ropes is generally lower as unrecoverable damage occurs to the explant when ‘threading’ onto the rope takes place. Furthermore, sponges cultured on the rope have the potential to be torn off the rope during storms as water flow increases significantly, or grow away from the rope and form an unmarketable, low value, characteristic doughnut shaped sponge. Differences in sponge growth and health do occur within species characterised by variations in regenerative ability, susceptibility to infection after cutting, hardiness and growth potential.


Mesh bag method

Lower levels of damage in some species of sponges cultured via mesh bags can lead to higher levels of survival. Growth rates may be decreased as mesh strands on the bags may decrease water flow, limiting food availability. The accumulation of
biofouling Biofouling or biological fouling is the accumulation of microorganisms, plants, algae, or small animals where it is not wanted on surfaces such as ship and submarine hulls, devices such as water inlets, pipework, grates, ponds, and rivers that ...
agents such as
bryozoans Bryozoa (also known as the Polyzoa, Ectoprocta or commonly as moss animals) are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about long, they have a special feeding structure called a l ...
,
ascidians Ascidiacea, commonly known as the ascidians, tunicates (in part), and sea squirts (in part), is a polyphyletic class in the subphylum Tunicata of sac-like marine invertebrate filter feeders. Ascidians are characterized by a tough outer "tunic" ...
and algae on the mesh may further limit water flow. Thin mesh strands with large gaps and a well-positioned site may act as a means to mitigate against biofouling and reduced flow rates.


Combination of methods

By combining both rope and mesh bag approaches to bath sponge aquaculture in a “nursery period”, increases may occur in quality and production. In the nursery period method, sponges are initially cultivated in mesh bags until the explants have healed and regenerated to efficiently filter water. The regenerated explants are transferred onto rope to promote optimal growth till harvesting. This strategy is labour-intensive and costly, with growth rates and survival found to be no greater than when farming occurs solely via the mesh bag method. A more economically viable method for cultivating bath sponges would be transferring sponges to larger mesh bags as sponge growth occurs to enable adequate water flow and nutrient sequestration.


Bath sponge aquaculture production in Micronesia

Bath sponges are currently being produced using the sponge ''Coscinoderma matthewsi'' with production of about 12,000 sponges, sold locally to residents and tourists in Pohnpei,
Federated States of Micronesia The Federated States of Micronesia (; abbreviated FSM) is an island country in Oceania. It consists of four states from west to east, Yap, Chuuk, Pohnpei and Kosraethat are spread across the western Pacific. Together, the states comprise a ...
. These sponges are one of the only true sustainably farmed sea sponges in the world. The sponges are farmed via the rope method, with low investment costs of a few thousand dollars for farming and maintenance equipment, producing 100% natural sponges with no harsh chemicals added during processing. Aquaculture production of ''C. matthewsi'' sponges was undertaken by the Marine and Environmental Research Institute of Pohnpei (MERIP), to try and generate a sustainable income for local community residents with few options to earn money. The sponges take approximately two years to reach harvestable size, with free divers routinely removing seaweed and biofouling agents by hand. These sponges are processed through natural processes, where they are left to air dry and then placed in baskets and returned to the lagoon where they were grown. This process removes all the organic matter within the sponge leaving behind the final bath sponge product. Further processing occurs by softening the sponge, but no bleaches, acids or colorants are used.


Bioactive sponge aquaculture

Research into farming sea sponges for bioactive metabolites occurs in the Mediterranean, Indo-Pacific, and South Pacific regions. The main goals are to optimise bioactive production methods, aquaculture processes and environmental conditions to maximise their production.


New methods

In the aquaculture for bioactives, the final explant shape is not of concern, allowing for additional production methods to be utilized. New methods of bioactive cultivation include the “mesh array method” which utilises the water column to vertically hang a mesh tube with single explants held in alternating pockets. The number of sponges required to aquaculture bioactives is reduced as sponge secondary metabolites can be repetitively harvested for many years, decreasing the costs and infrastructure required. The few sponges selected for metabolite production would have high production rates for the target metabolite to optimise production and profits.


Factors affecting secondary metabolite production

A number of factors affect sponge metabolite production, with metabolite concentration varying greatly between neighbouring explants. Localised differences in light intensity and bio-fouling are physical and biological factors that have been found to significantly affect metabolite biosynthesis in sponges. Changes in environmental factors may alter microbial populations and subsequently affect metabolite biosynthesis. Understanding the environmental factors that affect metabolite biosynthesis or the ecological role of the metabolite, can be used as a competitive advantage to maximise metabolite production and total yield. For example, if the ecological role of the secondary target metabolite was to deter predators, mimicking predation via wounding the sponge before harvesting may be an efficient technique to maximise metabolite production. Some sponges producing metabolites grow extremely quickly, suggesting that farming sponges may be a viable alternative to producing bioactives that at present cannot be chemically synthesised. Although sponge farming for bioactives is more lucrative owing to its higher value-adding properties, there are several challenges that are not present when aquaculturing bath sponges, such as the high costs associated with metabolite extraction and purification.


References

* {{Use dmy dates, date=August 2018 Sea Spon Sponges and humans