Saha equation
   HOME

TheInfoList



OR:

In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars. The expression was developed by Indian physicist Meghnad Saha in 1920.


Description

For a gas at a high enough
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
(here measured in energy units, i.e. keV or J) and/or
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, the thermal collisions of the atoms will ionize some of the atoms, making an ionized gas. When several or more of the electrons that are normally bound to the atom in orbits around the atomic nucleus are freed, they form an independent electron gas cloud co-existing with the surrounding gas of atomic ions and neutral atoms. In turn, this generates an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
, where the motion of charges generates currents, making a localised
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
, and creates the state of matter called plasma. The Saha equation describes the degree of ionization for any gas in thermal equilibrium as a function of the temperature, density, and ionization energies of the atoms. The Saha equation only holds for weakly ionized plasmas for which the Debye length is large. This means that the screening of the Coulomb interaction of ions and electrons by other ions and electrons is negligible. The subsequent lowering of the ionization potentials and the "cutoff" of the partition function is therefore also negligible. For a gas composed of a single atomic species, the Saha equation is written: :\frac = \frac\frac\exp\left \frac\right/math> where: * n_i is the density of atoms in the ''i''-th state of ionization, that is with ''i'' electrons removed. * g_i is the degeneracy of states for the ''i''-ions * \epsilon_i is the energy required to remove ''i'' electrons from a neutral atom, creating an ''i''-level ion. * n_e is the electron density * \lambda is the thermal de Broglie wavelength of an electron ::\lambda \ \stackrel\ \sqrt * m_e is the mass of an electron * T is the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
of the gas * h is Planck's constant The expression (\epsilon_-\epsilon_i) is the energy required to remove the (i+1)^ electron. In the case where only one level of ionization is important, we have n_1=n_e and defining the total density ''n''  as n=n_0+n_1, the Saha equation simplifies to: :\frac = \frac\frac\exp\left frac\right/math> where \epsilon is the energy of ionization.


Particle densities

The Saha equation is useful for determining the ratio of particle densities for two different ionization levels. The most useful form of the Saha equation for this purpose is :\frac = \frac, where ''Z'' denotes the partition function. The Saha equation can be seen as a restatement of the equilibrium condition for the
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a speci ...
s: :\mu_i = \mu_ + \mu_e\, This equation simply states that the potential for an atom of ionization state ''i'' to ionize is the same as the potential for an electron and an atom of ionization state ''i+1''; the potentials are equal, therefore the system is in equilibrium and no ''net'' change of ionization will occur.


Stellar atmospheres

In the early twenties Ralph H. Fowler (in collaboration with
Charles Galton Darwin Sir Charles Galton Darwin (19 December 1887 – 31 December 1962) was an English physicist who served as director of the National Physical Laboratory (NPL) during the Second World War. He was a son of the mathematician George Howard Darwin a ...
) developed a new method in
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic b ...
permitting a systematic calculation of the equilibrium properties of matter. He used this to provide a rigorous derivation of the ionization formula which Saha had obtained, by extending to the ionization of atoms the theorem of Jacobus Henricus van 't Hoff, used in physical chemistry for its application to molecular dissociation. Also, a significant improvement in the Saha equation introduced by Fowler was to include the effect of the excited states of atoms and ions. A further important step forward came in 1923, when Edward Arthur Milne and R.H. Fowler published a paper in the ''
Monthly Notices of the Royal Astronomical Society ''Monthly Notices of the Royal Astronomical Society'' (MNRAS) is a peer-reviewed scientific journal covering research in astronomy and astrophysics. It has been in continuous existence since 1827 and publishes letters and papers reporting orig ...
'', showing that the criterion of the maximum intensity of absorption lines (belonging to subordinate series of a neutral atom) was much more fruitful in giving information about physical parameters of stellar atmospheres than the criterion employed by Saha which consisted in the marginal appearance or disappearance of absorption lines. The latter criterion requires some knowledge of the relevant pressures in the stellar atmospheres, and Saha following the generally accepted view at the time assumed a value of the order of 1 to 0.1 atmosphere. Milne wrote:
Saha had concentrated on the marginal appearances and disappearances of absorption lines in the stellar sequence, assuming an order of magnitude for the pressure in a stellar atmosphere and calculating the temperature where increasing ionization, for example, inhibited further absorption of the line in question owing to the loss of the series electron. As Fowler and I were one day stamping round my rooms in Trinity and discussing this, it suddenly occurred to me that the maximum intensity of the Balmer lines of hydrogen, for example, was readily explained by the consideration that at the lower temperatures there were too few excited atoms to give appreciable absorption, whilst at the higher temperatures there are too few neutral atoms left to give any absorption. ..That evening I did a hasty order of magnitude calculation of the effect and found that to agree with a temperature of 10000° for the stars of type A0, where the Balmer lines have their maximum, a pressure of the order of 10−4 atmosphere was required. This was very exciting, because standard determinations of pressures in stellar atmospheres from line shifts and line widths had been supposed to indicate a pressure of the order of one atmosphere or more, and I had begun on other grounds to disbelieve this.


Stellar coronae

Saha equilibrium prevails when the plasma is in local thermodynamic equilibrium, which is not the case in the optically-thin corona. Here the equilibrium ionization states must be estimated by detailed statistical calculation of collision and recombination rates.


The early universe

Equilibrium ionization, described by the Saha equation, explains evolution in the early universe. After the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, all atoms were ionized, leaving mostly protons and electrons. According to Saha's approach, when the universe had expanded and cooled such that the temperature reached about 3,000 K, electrons recombined with protons forming
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
atoms. At this point, the universe became transparent to most electromagnetic radiation. That 3,000 K surface, red-shifted by a factor of about 1,000, generates the 3 K cosmic microwave background radiation, which pervades the universe today.


See also

*
List of plasma (physics) articles This is a list of plasma physics topics. A * Ablation * Abradable coating * Abraham–Lorentz force * Absorption band * Accretion disk * Active galactic nucleus * Adiabatic invariant * ADITYA (tokamak) * Aeronomy * Afterglow plasma * ...


References

{{Reflist


External links


Derivation & Discussion
by Hale Bradt
A detailed derivation
from the
University of Utah The University of Utah (U of U, UofU, or simply The U) is a public research university in Salt Lake City, Utah. It is the flagship institution of the Utah System of Higher Education. The university was established in 1850 as the University of De ...
Physics Department
Lecture notes
from the
University of Maryland The University of Maryland, College Park (University of Maryland, UMD, or simply Maryland) is a public land-grant research university in College Park, Maryland. Founded in 1856, UMD is the flagship institution of the University System of ...
Department of Astronomy Atomic physics Plasma physics