Safe-life design
   HOME

TheInfoList



OR:

In safe-life design, products are intended to be removed from service at a specific
design life The design life of a component or product is the period of time during which the item is expected by its designers to work within its specified parameters; in other words, the life expectancy of the item. It is not always the actual length of tim ...
. Safe-life is particularly relevant to simple metal aircraft, where airframe components are subjected to alternating loads over the lifetime of the aircraft which makes them susceptible to
metal fatigue In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts o ...
. In certain areas such as in wing or tail components, structural failure in flight would be catastrophic. The safe-life design technique is employed in critical systems which are either very difficult to repair or whose failure may cause severe damage to life and property. These systems are designed to work for years without requirement of any repairs. The disadvantage of the safe-life design philosophy is that serious assumptions must be made regarding the alternating loads imposed on the aircraft, so if those assumptions prove to be inaccurate, cracks may commence prior to the component being removed from service. To counter this disadvantage, alternative design philosophies like fail-safe design and
fault-tolerant design Fault tolerance is the property that enables a system to continue operating properly in the event of the failure of one or more faults within some of its components. If its operating quality decreases at all, the decrease is proportional to the ...
were developed.


The automotive industry

One way the safe-life approach is planning and envisaging the toughness of the mechanisms in the automotive industry. When the repetitive loading on mechanical structures intensified with the advent of the steam engine, back in the mid-1800s, this approach was established (Oja 2013). According to Michael Oja, “Engineers and academics began to understand the effect that cyclic stress (or strain) has on the life of a component; a curve was developed relating the magnitude of the cyclic stress (S) to the logarithm of the number of cycles to failure (N)” (Oja 2013). The
S-N curve In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts o ...
because the fundamental relation is in safe life designs. The curve is reliant on many conditions, including the ratio of maximum load to minimum load (R-ratio), the type of material being inspected, and the regularity at which the cyclic stresses (or strains) are applied. Today, the curve is still consequential by experimentally testing laboratory specimens at many different continuous cyclic load levels, and detecting the number of cycles to failure (Oja 2013). Michael Oja states that, “Unsurprisingly, as the load decreases, the life of the specimen increases” (Oja 2013). The practical limit of experimental challenges has been due to frequency confines of hydraulic-powered test machines. The load at which this high-cycle life happens has come to be recognized as the fatigue asset of the material (Oja 2013).


Helicopter structure

The safe-life design philosophy is applied to all helicopter structures. In the current generation of Army helicopters, such as the UH-60 Black Hawk, composite materials make up as great as 17 percent of the airframe and rotor weight (Reddick). Harold Reddick states that, “With the advent of major helicopter composite structures R&D projects, such as the Advanced Composite Airframe Program (ACAP), and Manufacturing Methods and Technology (MM&T) projects, such as UH-60 Low Cost Composite Blade Program, it is estimated that within a few years composite materials could be applied to as much as 80% of the airframe and rotor weight of a helicopter in a production program” (Reddick). Along with this application it is the essential obligation that sound, definitive design criteria be industrialized in order that the composite structures own high fatigue lives for economy of ownership and good damage tolerance for flight safety. Safe-life and damage-tolerant criteria are practical to all helicopter flight critical components (Reddick).


Citations


References

Oja, Michael (2013-03-18). "Structural Design Concepts: Overview of Safe Life and Damage Tolerance". ''Vextec.com , Reducing Life Cycle Costs From Design To Field Service''. Retrieved 2019-06-11. "Fatigue (material)", ''Wikipedia'', 2019-06-04, retrieved 2019-06-11 Reddick, Harold. "Safe-Life and Damage-Tolerant Design Approaches for Helicopter Structures" (PDF). ''NASA''. Retrieved June 11, 2019.


See also

*
Fail-safe In engineering, a fail-safe is a design feature or practice that in the event of a specific type of failure, inherently responds in a way that will cause minimal or no harm to other equipment, to the environment or to people. Unlike inherent safe ...
*
Fault-tolerant design Fault tolerance is the property that enables a system to continue operating properly in the event of the failure of one or more faults within some of its components. If its operating quality decreases at all, the decrease is proportional to the ...
*
Safety engineering Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety eng ...
*
Damage tolerance In engineering, damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws ...
* 1945 Australian National Airways Stinson crash Design {{comm-design-stub