Riemann sphere
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. ...
. This extended plane represents the extended complex numbers, that is, the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the
poles Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, who share a common history, culture, the Polish language and are identified with the country of Poland in ...
of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the Riemann sphere is the prototypical example of a Riemann surface, and is one of the simplest complex manifolds. In projective geometry, the sphere can be thought of as the complex projective line \mathbf^1(\mathbf), the projective space of all complex lines in \mathbf^2. As with any
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
Riemann surface, the sphere may also be viewed as a projective algebraic curve, making it a fundamental example in algebraic geometry. It also finds utility in other disciplines that depend on analysis and geometry, such as the Bloch sphere of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
and in other branches of physics. The extended complex plane is also called the closed complex plane.


Extended complex numbers

The extended complex numbers consist of the complex numbers \mathbf together with \infty. The set of extended complex numbers may be written as \mathbf\cup\, and is often denoted by adding some decoration to the letter \mathbf, such as :\widehat,\quad\overline,\quad\text\quad\mathbf_\infty. The notation \mathbf^ has also seen use, but as this notation is also used for the punctured plane \mathbf \setminus \, it can lead to ambiguity. Geometrically, the set of extended complex numbers is referred to as the Riemann sphere (or extended complex plane).


Arithmetic operations

Addition of complex numbers may be extended by defining, for z\in\mathbf, :z+\infty=\infty for any complex number z, and multiplication may be defined by :z\times\infty=\infty for all nonzero complex numbers z, with \infty\times\infty = \infty. Note that \infty -\infty and 0\times \infty are left undefined. Unlike the complex numbers, the extended complex numbers do not form a field, since \infty does not have an additive nor
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/' ...
. Nonetheless, it is customary to define division on \mathbf\cup\ by :\frac = \infty\quad\text\quad \frac = 0 for all nonzero complex numbers z with \infty/0 = \infty and 0/\infty =0. The quotients 0/0 and \infty/\infty are left undefined.


Rational functions

Any rational function f(z) = g(z)/h(z) (in other words, f(z) is the ratio of polynomial functions g(z) and h(z) of z with complex coefficients, such that g(z) and h(z) have no common factor) can be extended to a continuous function on the Riemann sphere. Specifically, if z_0 is a complex number such that the denominator h(z_0) is zero but the numerator g(z_0) is nonzero, then f(z_0) can be defined as \infty. Moreover, f(\infty) can be defined as the
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
of f(z) as z\to\infty, which may be finite or infinite. The set of complex rational functions—whose mathematical symbol is \mathbf(z)—form all possible holomorphic functions from the Riemann sphere to itself, when it is viewed as a Riemann surface, except for the constant function taking the value \infty everywhere. The functions of \mathbf(z) form an algebraic field, known as ''the field of rational functions on the sphere''. For example, given the function :f(z) = \frac we may define f(\pm 5) = \infty, since the denominator is zero at \pm 5, and f(\infty) = 3 since f(z)\to 3 as z\to\infty. Using these definitions, f becomes a continuous function from the Riemann sphere to itself.


As a complex manifold

As a one-dimensional complex manifold, the Riemann sphere can be described by two charts, both with domain equal to the complex number plane \mathbf. Let \zeta be a complex number in one copy of \mathbf , and let \xi be a complex number in another copy of \mathbf. Identify each nonzero complex number \zeta of the first \mathbf with the nonzero complex number 1/\xi of the second \mathbf. Then the map :f(z) = \frac is called the transition map between the two copies of \mathbf—the so-called charts—glueing them together. Since the transition maps are holomorphic, they define a complex manifold, called the Riemann sphere. As a complex manifold of 1 complex dimension (i.e. 2 real dimensions), this is also called a Riemann surface. Intuitively, the transition maps indicate how to glue two planes together to form the Riemann sphere. The planes are glued in an "inside-out" manner, so that they overlap almost everywhere, with each plane contributing just one point (its origin) missing from the other plane. In other words, (almost) every point in the Riemann sphere has both a \zeta value and a \xi value, and the two values are related by \zeta=1/\xi. The point where \xi=0 should then have \zeta -value " 1/0 "; in this sense, the origin of the \xi -chart plays the role of \infty in the \zeta -chart. Symmetrically, the origin of the \zeta -chart plays the role of \infty in the \xi -chart. Topologically, the resulting space is the one-point compactification of a plane into the sphere. However, the Riemann sphere is not merely a topological sphere. It is a sphere with a well-defined complex structure, so that around every point on the sphere there is a neighborhood that can be biholomorphically identified with \mathbf. On the other hand, the uniformization theorem, a central result in the classification of Riemann surfaces, states that every simply-connected Riemann surface is biholomorphic to the complex plane, the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
, or the Riemann sphere. Of these, the Riemann sphere is the only one that is a closed surface (a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in Britis ...
surface without boundary). Hence the two-dimensional sphere admits a unique complex structure turning it into a one-dimensional complex manifold.


As the complex projective line

The Riemann sphere can also be defined as the complex projective line. The points of the complex projective line are equivalence classes established by the following relation on points from \mathbf^2 \setminus \ : If for some \lambda\ne 0 , w=\lambda u and z=\lambda v , then (w,z) \thicksim (u,v). In this case, the equivalence class is written ,z using
projective coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinate system, Cartesian coordinates are u ...
. Given any point ,z in the complex projective line, one of w and z must be non-zero, say w\ne 0 . Then by the equivalence relation, , z\thicksim \left , z/w \right/math>, which is in a chart for the Riemann sphere manifold. This treatment of the Riemann sphere connects most readily to projective geometry. For example, any line (or smooth conic) in the complex projective plane is biholomorphic to the complex projective line. It is also convenient for studying the sphere's automorphisms, later in this article.


As a sphere

The Riemann sphere can be visualized as the unit sphere x^2+y^2+z^2=1 in the three-dimensional real space \mathbf^3. To this end, consider the stereographic projection from the unit sphere minus the point (0,0,1) onto the plane z=0 , which we identify with the complex plane by \zeta=x+iy . In Cartesian coordinates (x,y,z) and spherical coordinates (\theta,\phi) on the sphere (with \theta the zenith and \phi the
azimuth An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematical ...
), the projection is :\zeta = \frac = \cot\left(\frac \theta\right) \; e^. Similarly, stereographic projection from (0,0,-1) onto the plane z=0 , identified with another copy of the complex plane by \xi = x-iy , is written :\xi = \frac = \tan\left(\frac \theta\right) \; e^. In order to cover the unit sphere, one needs the two stereographic projections: the first will cover the whole sphere except the point (0,0,1) and the second except the point (0,0,-1). Hence, one needs two complex planes, one for each projection, which can be intuitively seen as glued back-to-back at z=0 . Note that the two complex planes are identified differently with the plane z=0 . An orientation-reversal is necessary to maintain consistent orientation on the sphere, and in particular complex conjugation causes the transition maps to be holomorphic. The transition maps between \zeta -coordinates and \xi -coordinates are obtained by composing one projection with the inverse of the other. They turn out to be \zeta=1/\xi and \xi = 1/\zeta , as described above. Thus the unit sphere is diffeomorphic to the Riemann sphere. Under this diffeomorphism, the unit circle in the \zeta -chart, the unit circle in the \xi -chart, and the equator of the unit sphere are all identified. The unit disk , \zeta , < 1 is identified with the southern hemisphere z<0 , while the unit disk , \xi , < 1 is identified with the northern hemisphere z>0 .


Metric

A Riemann surface does not come equipped with any particular Riemannian metric. The Riemann surface's conformal structure does, however, determine a class of metrics: all those whose subordinate conformal structure is the given one. In more detail: The complex structure of the Riemann surface does uniquely determine a metric up to conformal equivalence. (Two metrics are said to be conformally equivalent if they differ by multiplication by a positive smooth function.) Conversely, any metric on an oriented surface uniquely determines a complex structure, which depends on the metric only up to conformal equivalence. Complex structures on an oriented surface are therefore in one-to-one correspondence with conformal classes of metrics on that surface. Within a given conformal class, one can use conformal symmetry to find a representative metric with convenient properties. In particular, there is always a complete metric with constant curvature in any given conformal class. In the case of the Riemann sphere, the Gauss–Bonnet theorem implies that a constant-curvature metric must have positive curvature K . It follows that the metric must be isometric to the sphere of radius 1/\sqrt in \mathbf^3 via stereographic projection. In the \zeta-chart on the Riemann sphere, the metric with K=1 is given by :ds^2 = \left(\frac\right)^2\,, d\zeta, ^2 = \frac\,d\zeta \,d\overline \zeta. In real coordinates \zeta=u+iv , the formula is :ds^2 = \frac \left(du^2 + dv^2\right). Up to a constant factor, this metric agrees with the standard
Fubini–Study metric In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and ...
on complex projective space (of which the Riemann sphere is an example). Up to scaling, this is the ''only'' metric on the sphere whose group of orientation-preserving isometries is 3-dimensional (and none is more than 3-dimensional); that group is called \mbox(3) . In this sense, this is by far the most symmetric metric on the sphere. (The group of all isometries, known as \mbox(3) , is also 3-dimensional, but unlike \mbox(3) is not a connected space.) Conversely, let S denote the sphere (as an abstract smooth or topological manifold). By the uniformization theorem there exists a unique complex structure on S up to conformal equivalence. It follows that any metric on S is conformally equivalent to the round metric. All such metrics determine the same conformal geometry. The round metric is therefore not intrinsic to the Riemann sphere, since "roundness" is not an invariant of conformal geometry. The Riemann sphere is only a conformal manifold, not a Riemannian manifold. However, if one needs to do Riemannian geometry on the Riemann sphere, the round metric is a natural choice (with any fixed radius, though radius 1 is the simplest and most common choice). That is because only a round metric on the Riemann sphere has its isometry group be a 3-dimensional group. (Namely, the group known as \mbox(3), a continuous ("Lie") group that is topologically the 3-dimensional projective space \mathbf^3.)


Automorphisms

The study of any mathematical object is aided by an understanding of its group of automorphisms, meaning the maps from the object to itself that preserve the essential structure of the object. In the case of the Riemann sphere, an automorphism is an invertible conformal map (i.e. biholomorphic map) from the Riemann sphere to itself. It turns out that the only such maps are the Möbius transformations. These are functions of the form :f(\zeta) = \frac, where a , b , c , and d are complex numbers such that ad-bc\ne 0 . Examples of Möbius transformations include
dilation Dilation (or dilatation) may refer to: Physiology or medicine * Cervical dilation, the widening of the cervix in childbirth, miscarriage etc. * Coronary dilation, or coronary reflex * Dilation and curettage, the opening of the cervix and surgi ...
s, rotations,
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
s, and complex inversion. In fact, any Möbius transformation can be written as a composition of these. The Möbius transformations are homographies on the complex projective line. In
projective coordinates In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinate system, Cartesian coordinates are u ...
, the transformation ''f'' can be written : zeta,\ 1\begin a & c \\ b & d \end \ = \ \zeta + b,\ c\zeta + d\ = \ \left \tfrac,\ 1 \right\ = \ (\zeta),\ 1 Thus the Möbius transformations can be described as two-by-two complex matrices with nonzero
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
. Since they act on projective coordinates, two matrices yield the same Möbius transformation if and only if they differ by a nonzero factor. The group of Möbius transformations is the projective linear group \mbox(2,\mathbf) . If one endows the Riemann sphere with the
Fubini–Study metric In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and ...
, then not all Möbius transformations are isometries; for example, the dilations and translations are not. The isometries form a proper subgroup of \mbox(2,\mathbf) , namely \mbox(2) . This subgroup is isomorphic to the rotation group \mbox(3) , which is the group of symmetries of the unit sphere in \mathbf^3 (which, when restricted to the sphere, become the isometries of the sphere).


Applications

In complex analysis, a meromorphic function on the complex plane (or on any Riemann surface, for that matter) is a ratio f/g of two holomorphic functions f and g . As a map to the complex numbers, it is undefined wherever g is zero. However, it induces a holomorphic map (f,g) to the complex projective line that is well-defined even where g=0 . This construction is helpful in the study of holomorphic and meromorphic functions. For example, on a compact Riemann surface there are no non-constant holomorphic maps to the complex numbers, but holomorphic maps to the complex projective line are abundant. The Riemann sphere has many uses in physics. In quantum mechanics, points on the complex projective line are natural values for
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
polarization states, spin states of
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
ive
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s of spin 1/2 , and 2-state particles in general (see also
Quantum bit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system ...
and Bloch sphere). The Riemann sphere has been suggested as a relativistic model for the celestial sphere. In string theory, the
worldsheet In string theory, a worldsheet is a two-dimensional manifold which describes the embedding of a string in spacetime. The term was coined by Leonard Susskind as a direct generalization of the world line concept for a point particle in special and ...
s of strings are Riemann surfaces, and the Riemann sphere, being the simplest Riemann surface, plays a significant role. It is also important in
twistor theory In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic ar ...
.


See also

* Conformal geometry *
Cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, t ...
* Dessin d'enfant * Directed infinity *
Hopf bundle In the mathematical field of differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hop ...
*
Möbius plane In mathematics, a Möbius plane (named after August Ferdinand Möbius) is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. The classical example is based on the geometry of lines and circles in the real Affine plane (incide ...
* Projectively extended real line


References

* * * *


External links

*
Moebius Transformations Revealed
by Douglas N. Arnold and Jonathan Rogness (a video by two University of Minnesota professors explaining and illustrating Möbius transformations using stereographic projection from a sphere) {{DEFAULTSORT:Riemann Sphere Riemann surfaces Projective geometry Spheres Bernhard Riemann