Rhizobacteria
   HOME

TheInfoList



OR:

Rhizobacteria are root-associated
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
that can have a detrimental (parasitic varieties), neutral or beneficial effect on plant growth. The name comes from the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
''rhiza'', meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants ( mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature. Generally, about 2–5% of
rhizosphere The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microo ...
bacteria are PGPR. They are an important group of microorganisms used in
biofertilizer A biofertilizer is a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of prim ...
. Biofertilization accounts for about 65% of the nitrogen supply to crops worldwide. PGPRs have different relationships with different species of host plants. The two major classes of relationships are rhizospheric and endophytic. Rhizospheric relationships consist of the PGPRs that colonize the surface of the root, or superficial intercellular spaces of the host plant, often forming root nodules. The dominant species found in the rhizosphere is a microbe from the genus ''
Azospirillum ''Azospirillum'' is a Gram-negative, microaerophilic, non- fermentative and nitrogen-fixing bacterial genus from the family of Rhodospirillaceae. ''Azospirillum'' bacteria can promote plant growth. Characteristics The genus ''Azospirillum'' ...
''. Endophytic relationships involve the PGPRs residing and growing within the host plant in the apoplastic space.


Nitrogen fixation

Nitrogen fixation Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
is one of the most beneficial processes performed by rhizobacteria. Nitrogen is a vital nutrient to plants and gaseous nitrogen (N2) is not available to them due to the high energy required to break the triple bonds between the two atoms. Rhizobacteria, through nitrogen fixation, are able to convert gaseous nitrogen (N2) to ammonia (NH3) making it an available nutrient to the host plant which can support and enhance plant growth. The host plant provides the bacteria with amino acids so they do not need to assimilate ammonia. The amino acids are then shuttled back to the plant with newly fixed nitrogen.
Nitrogenase Nitrogenases are enzymes () that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only fa ...
is an enzyme involved in nitrogen fixation and requires anaerobic conditions. Membranes within root nodules are able to provide these conditions. The rhizobacteria require oxygen to metabolize, so oxygen is provided by a hemoglobin protein called
leghemoglobin 3rd Leghemoglobin (also leghaemoglobin or legoglobin) is an oxygen-carrying phytoglobin found in the nitrogen-fixing root nodules of leguminous plants. It is produced by these plants in response to the roots being colonized by nitrogen-fixin ...
which is produced within the nodules. Legumes are well-known nitrogen-fixing crops and have been used for centuries in
crop rotation Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. It reduces reliance on one set of nutrients, pest and weed pressure, and the probability of developing resistant ...
to maintain the health of the soil.


Symbiotic relationships

The symbiotic relationship between rhizobacteria and their host plants is not without costs. For the plant to be able to benefit from the added available nutrients provided by the rhizobacteria, it needs to provide a place and the proper conditions for the rhizobacteria to live. Creating and maintaining root nodules for rhizobacteria can cost between 12–25% of the plant's total photosynthetic output. Legumes are often able to colonize early successional environments due to the unavailability of nutrients. Once colonized, though, the rhizobacteria make the soil surrounding the plant more nutrient rich, which in turn can lead to competition with other plants. The symbiotic relationship, in short, can lead to increased competition. PGPRs increase the availability of nutrients through the solubilization of unavailable forms of nutrients and by the production of siderophores which aids in the facilitating of nutrient transport.
Phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
, a limiting nutrient for plant growth, can be plentiful in soil, but is most commonly found in insoluble forms. Organic acids and phosphotases released by rhizobacteria found in plant rhizospheres facilitate the conversion of insoluble forms of phosphorus to plant-available forms such as H2PO4. PGPR bacteria include ''
Pseudomonas putida ''Pseudomonas putida'' is a Gram-negative, rod-shaped, saprotrophic soil bacterium. Based on 16S rRNA analysis, ''P. putida'' was taxonomically confirmed to be a ''Pseudomonas'' species (''sensu stricto'') and placed, along with several other ...
'', '' Azospirillum fluorescens'', and ''Azospirillum lipoferum'' and notable nitrogen-fixing bacteria associated with legumes includes ''Allorhizobium'', ''Azorhizobium'', ''Bradyrhizobium'', and ''Rhizobium''. Though microbial inoculants can be beneficial for crops, they are not widely used in
industrial agriculture Industrial agriculture is a form of modern farming that refers to the industrialized production of crops and animals and animal products like eggs or milk. The methods of industrial agriculture include innovation in agricultural machinery and f ...
, as large-scale application techniques have yet to become economically viable. A notable exception is the use of rhizobial inoculants for legumes such as peas. Inoculation with PGPRs ensures efficient nitrogen fixation, and they have been employed in North American agriculture for over 100 years.


Plant growth-promoting rhizobacteria

Plant growth-promoting rhizobacteria (PGPR) were first defined by Kloepper and Schroth to be soil
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
that colonize the roots of plants following inoculation onto
seed A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiospe ...
and that enhance
plant growth Important structures in plant development are buds, shoots, roots, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. Thus, a living plant a ...
. The following are implicit in the colonization process: ability to survive inoculation onto seed, to multiply in the spermosphere (region surrounding the seed) in response to seed exudates, to attach to the root surface, and to colonize the developing
root system In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representatio ...
. The ineffectiveness of PGPR in the field has often been attributed to their inability to colonize plant roots. A variety of bacterial traits and specific
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s contribute to this process, but only a few have been identified. These include
motility Motility is the ability of an organism to move independently, using metabolic energy. Definitions Motility, the ability of an organism to move independently, using metabolic energy, can be contrasted with sessility, the state of organisms th ...
, chemotaxis to seed and root exudates, production of pili or fimbriae, production of specific cell surface components, ability to use specific components of root exudates, protein secretion, and
quorum sensing In biology, quorum sensing or quorum signalling (QS) is the ability to detect and respond to cell population density by gene regulation. As one example, QS enables bacteria to restrict the expression of specific genes to the high cell densities at ...
. The generation of
mutant In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It ...
s altered in expression of these traits is aiding our understanding of the precise role each one plays in the colonization process. Progress in the identification of new, previously uncharacterized genes is being made using nonbiased screening strategies that rely on gene fusion technologies. These strategies employ reporter
transposon A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tra ...
s and in vitro expression technology (IVET) to detect genes expressed during colonization. Using
molecular marker A molecular marker is a molecule, sampled from some source, that gives information about its source. For example, DNA is a molecular marker that gives information about the organism from which it was taken. For another example, some proteins can be ...
s such as green
fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, ...
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
or fluorescent antibodies, it is possible to monitor the location of individual rhizobacteria on the root using
confocal laser scanning microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a sp ...
. This approach has also been combined with an
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosoma ...
-targeting probe to monitor the metabolic activity of a rhizobacterial strain in the
rhizosphere The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microo ...
and showed that bacteria located at the root tip were most active.


Mechanisms of action

PGPRs enhance plant growth by direct and indirect means, but the specific mechanisms involved have not all been well characterized. Direct mechanisms of plant growth promotion by PGPRs can be demonstrated in the absence of plant
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s or other rhizosphere
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
s, while indirect mechanisms involve the ability of PGPRs to reduce the harmful effects of plant pathogens on crop yield. PGPRs have been reported to directly enhance plant growth by a variety of mechanisms: fixation of atmospheric nitrogen transferred to the plant, production of siderophores that
chelate Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
iron and make it available to the plant root,
solubilization Micellar solubilization (solubilization) is the process of incorporating the solubilizate (the component that undergoes solublization) into or onto micelles. Solublization may occur in a system consisting of a solvent, an association colloid (a co ...
of minerals such as phosphorus, and synthesis of
phytohormone Plant hormone (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, ...
s. Direct enhancement of mineral uptake due to increases in specific ion fluxes at the root surface in the presence of PGPRs has also been reported. PGPR strains may use one or more of these mechanisms in the rhizosphere. Molecular approaches using microbial and plant mutants altered in their ability to synthesize or respond to specific phytohormones have increased understanding of the role of phytohormone synthesis as a direct mechanism of plant growth enhancement by PGPRs. PGPR that synthesize auxins,
gibberellin Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. GAs are one of the longest-known classes of plan ...
s and
kinetin Kinetin (/'kaɪnɪtɪn/) is a type of cytokinin, a class of plant hormone that promotes cell division. Kinetin was originally isolated by Carlos Miller and Skoog ''et al.'' as a compound from autoclaved herring sperm DNA that had cell division ...
s or that interfere with plant ethylene synthesis have been identified. Development of PGPRs into biofertilisers and biopesticides could be a novel way of increasing crop yield and decreasing disease incidence, whilst decreasing dependency on chemical pesticides and fertilisers which can often have harmful effects on the local ecology and environment.


Pathogenic roles

Studies conducted on sugar beet crops found that some root-colonizing bacteria were deleterious rhizobacteria (DRB). Sugar beet seeds inoculated with DRB had reduced germination rates, root lesions, reduced root elongation, root distortions, increased fungi infection, and decreased plant growth. In one trial the sugar beet yield was reduced by 48%. Six strains of rhizobacteria have been identified as being DRB. The strains are in the genera ''
Enterobacter ''Enterobacter'' is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. It is the type genus of the order Enterobacterales. Several strains of these bacteria are ...
'', ''
Klebsiella ''Klebsiella'' is a genus of Gram-negative, oxidase-negative, rod-shaped bacteria with a prominent polysaccharide-based capsule. ''Klebsiella'' species are found everywhere in nature. This is thought to be due to distinct sublineages developi ...
'', '' Citrobacter'', ''
Flavobacterium ''Flavobacterium'' is a genus of Gram-negative, nonmotile and motile, rod-shaped bacteria that consists of 130 recognized species. Flavobacteria are found in soil and fresh water in a variety of environments. Several species are known to cause ...
'', '' Achromobacter'', and '' Arthrobacter''. Due to a large number of taxonomic species yet to be described, complete characterization has not been possible as DRB are highly variable. The presence of PGPRs has proven to reduce and inhibit the colonization of DRB on sugar beet roots. Plots inoculated with PGPRs and DRBs had an increase in production of 39% while plots only treated with DRBs had a reduction in production of 30%.


Biocontrol

Rhizobacteria are also able to control plant diseases that are caused by other bacteria and fungi. Disease is suppressed through induced systemic resistance and through the production of antifungal metabolites. ''Pseudomonas''
biocontrol Biological control or biocontrol is a method of controlling pests, such as insects, mites, weeds, and plant diseases, using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also in ...
strains have been genetically modified to improve plant growth and improve the disease resistance of agricultural crops. In agriculture, inoculant bacteria are often applied to the seed coat of seeds prior to being sown. Inoculated seeds are more likely to establish large enough rhizobacterial populations within the rhizosphere to produce notable beneficial effects on the crop. They can also combat pathogenic microbes in
cattle Cattle (''Bos taurus'') are large, domesticated, cloven-hooved, herbivores. They are a prominent modern member of the subfamily Bovinae and the most widespread species of the genus ''Bos''. Adult females are referred to as cows and adult ma ...
. Different forage species regulate their own
rhizosphere The rhizosphere is the narrow region of soil or substrate that is directly influenced by root secretions and associated soil microorganisms known as the root microbiome. Soil pores in the rhizosphere can contain many bacteria and other microo ...
to varying degrees and favouring various microbes. Kyselková et al 2015 find planting forage species known to encourage native rhizobacteria retards the spread within the soil of antibiotic resistance genes of cow faeces bacteria.


References

{{Reflist Bacteria Soil biology Botany