Reservoir simulation
   HOME

TheInfoList



OR:

Reservoir simulation is an area of
reservoir engineering Reservoir engineering is a branch of petroleum engineering that applies scientific principles to the fluid flow through porous medium during the development and production of oil and gas reservoirs so as to obtain a high economic recovery. The wo ...
in which
computer model Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be deter ...
s are used to predict the flow of fluids (typically, oil, water, and gas) through
porous media A porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid (liquid or gas). The skeletal material is usu ...
. The creation of models of oil fields and the implementation of calculations of field development on their basis is one of the main areas of activity of engineers and oil researchers. On the basis of geological and physical information about the properties of an oil, gas or
gas condensate Natural-gas condensate, also called natural gas liquids, is a low-density mixture of hydrocarbon liquids that are present as gaseous components in the raw natural gas produced from many natural gas fields. Some gas species within the raw natur ...
field, consideration of the capabilities of the systems and technologies for its development create quantitative ideas about the development of the field as a whole. A system of interrelated quantitative ideas about the development of a field is a model of its development, which consists of a reservoir model and a model of a field development process. Layer models and processes for extracting oil and gas from them are always clothed in a mathematical form, i.e. characterized by certain mathematical relationships. The main task of the engineer engaged in the calculation of the development of an oil field is to draw up a calculation model based on individual concepts derived from a geological-geophysical study of the field, as well as hydrodynamic studies of wells. Generally speaking, any combination of reservoir models and development process can be used in an oil field development model, as long as this combination most accurately reflects reservoir properties and processes. At the same time, the choice of a particular reservoir model may entail taking into account any additional features of the process model and vice versa. The reservoir model should be distinguished from its design scheme, which takes into account only the geometric shape of the reservoir. For example, a reservoir model may be a stratified heterogeneous reservoir. In the design scheme, the reservoir with the same model of it can be represented as a reservoir of a circular shape, a rectilinear reservoir, etc.


Fundamentals

Traditional
finite difference A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for t ...
simulators dominate both theoretical and practical work in reservoir simulation. Conventional FD simulation is underpinned by three physical concepts:
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
,
isothermal In thermodynamics, an isothermal process is a type of thermodynamic process in which the temperature ''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and ...
fluid phase behavior, and the Darcy approximation of fluid flow through porous media. Thermal simulators (most commonly used for
heavy crude oil Heavy crude oil (or extra heavy crude oil) is highly-viscous oil that cannot easily flow from production wells under normal reservoir conditions. It is referred to as "heavy" because its density or specific gravity is higher than that of light cru ...
applications) add conservation of energy to this list, allowing temperatures to change within the reservoir. Numerical techniques and approaches that are common in modern simulators: * Most modern FD simulation programs allow for construction of 3-D representations for use in either full-field or single-well models. 2-D approximations are also used in various conceptual models, such as cross-sections and 2-D radial grid models. * Theoretically, finite difference models permit discretization of the reservoir using both structured and more complex unstructured grids to accurately represent the geometry of the reservoir. Local grid refinements (a finer grid embedded inside of a coarse grid) are also a feature provided by many simulators to more accurately represent the near wellbore multi-phase flow effects. This "refined meshing" near wellbores is extremely important when analyzing issues such as water and gas coning in reservoirs. Other types of simulators include
finite element The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat t ...
and streamline. * Representation of faults and their transmissibilities are advanced features provided in many simulators. In these models, inter-cell flow transmissibilities must be computed for non-adjacent layers outside of conventional neighbor-to-neighbor connections. * Natural fracture simulation (known as dual-porosity and dual-permeability) is an advanced feature which model hydrocarbons in tight matrix blocks. Flow occurs from the tight matrix blocks to the more permeable fracture networks that surround the blocks, and to the wells. * A black-oil simulator does not consider changes in composition of the hydrocarbons as the field is produced, beyond the solution or evolution of dissolved gas in oil, or vaporisation or dropout of condensate from gas. * A ''compositional reservoir simulator'' calculates the PVT properties of oil and gas phases once they have been fitted to an
equation of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or intern ...
(EOS), as a mixture of components. The simulator then uses the fitted EOS equation to dynamically track the movement of both phases and components in field. This is accomplished at increased cost in setup time, compute time, and computer memory. The simulation model computes the saturation change of three phases (oil, water and gas)and pressure of each phase in each cell at each time step. As a result of declining pressure as in a reservoir depletion study, gas will be liberated from the oil. If pressures increase as a result of water or gas injection, the gas is re-dissolved into the oil phase. A simulation project of a developed field, usually requires " history matching" where historical field production and pressures are compared to calculated values. It was realised at an early stage that this was essentially an optimisation process, corresponding to
Maximum Likelihood In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stat ...
. As such, it can be automated, and there are multiple commercial and software packages designed to accomplish just that. The model's parameters are adjusted until a reasonable match is achieved on a field basis and usually for all wells. Commonly, producing water cuts or water-oil ratios and gas-oil ratios are matched.


Other engineering approaches

Without FD models, recovery estimates and oil rates can also be calculated using numerous analytical techniques which include material balance equations (including Havlena–Odeh and Tarner method), fractional flow curve methods (such as the Buckley–Leverett one-dimensional displacement method, the Deitz method for inclined structures, or coning models), and sweep efficiency estimation techniques for water floods and decline curve analysis. These methods were developed and used prior to traditional or "conventional" simulations tools as computationally inexpensive models based on simple homogeneous reservoir description. Analytical methods generally cannot capture all the details of the given reservoir or process, but are typically numerically fast and at times, sufficiently reliable. In modern reservoir engineering, they are generally used as screening or preliminary evaluation tools. Analytical methods are especially suitable for potential assets evaluation when the data are limited and the time is critical, or for broad studies as a pre-screening tool if a large number of processes and / or technologies are to be evaluated. The analytical methods are often developed and promoted in the academia or in-house, however commercial packages also exist.


Software

Many programs are available for reservoir simulation. The most well known (in alphabetical order) are: Open source: * BOAST – Black Oil Applied Simulation Tool (Boast) simulator is a free software package for reservoir simulation available from the U.S. Department of Energy. Boast is an IMPES numerical simulator (finite-difference implicit pressure-explicit saturation) which finds the pressure distribution for a given time step first then calculates the saturation distribution for the same time step isothermal. The last release was in 1986 but it remains as a good simulator for educational purposes. * MRST – The MATLAB Reservoir Simulation Toolbox (MRST) is developed by SINTEF Applied Mathematics as a MATLAB® toolbox. The toolbox consists of two main parts: a core offering basic functionality and single and two-phase solvers, and a set of add-on modules offering more advanced models, viewers and solvers. MRST is mainly intended as a toolbox for rapid prototyping and demonstration of new simulation methods and modeling concepts on unstructured grids. Despite this, many of the tools are quite efficient and can be applied to surprisingly large and complex models. * OPM – The Open Porous Media (OPM) initiative provides a set of open-source tools centered on the simulation of flow and transport of fluids in porous media. Commercial: * Schlumberger INTERSECT * Schlumberger ECLIPSE – Originally developed by ECL (Exploration Consultants Limited) and currently owned, developed, marketed and maintained by SIS (formerly known as GeoQuest), a division of Schlumberger. The name ECLIPSE originally was an acronym for "ECL´s Implicit Program for Simulation Engineering". Simulators include black oil, compositional, thermal finite-volume, and streamline simulation. Add-on options include local grid refinements, coalbed methane, gas field operations, advanced wells, reservoir coupling, and surface networks. *ECHELON, by Stone Ridge Technology: a fully implicit simulator, the only full GPU accelerated reservoir simulator for black-oil formulations. *ESTD Co. RETINA Simulation – RETINA Simulation is a Black-Oil and Compositional reservoir simulation software fully developed in Engineering Support and Technology Development Company (ESTD). * CMG Suite (IMEX, GEM and STARS) – Computer Modelling Group currently offers three simulators: a black oil simulator, called IMEX, a compositional / unconventional simulator called GEM and a thermal and advanced processes simulator called STARS. * Sensor, by Coats Engineering, is a black oil and compositional reservoir simulator developed beginning in the 1990s by Dr. Keith H. Coats, founder of the commercial reservoir simulation industry (Intercomp Resource and Development, 1968). Sensor is the last of many reservoir simulators developed by Dr. Coats. * XXSim is an EOS based general purpose compositional reservoir simulator with fully implicit formulation. It allows any components to appear and stay in any fluid phases (aqueous, oilec and vapour ).It can be simplified to the conventional or traditional black oil, compositional and thermal modules. It also can be expanded to fully EOS based thermal simulator. * Tempest MORE is a reservoir simulator offering black oil, compositional and thermal options. * ExcSim, a fully implicit 3-phase 2D modified black oil reservoir simulator for the Microsoft Excel platform * Landmark Nexus – Nexus is an oil and gas reservoir simulator originally developed as 'Falcon' by
Amoco Amoco () is a brand of filling station, fuel stations operating in the United States, and owned by BP since 1998. The Amoco Corporation was an American chemical and petroleum, oil company, founded by Standard Oil Company in 1889 around a oil re ...
,
Los Alamos National Laboratory Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, ...
and
Cray Research Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed ...
. It is currently owned, developed, marketed and maintained by Landmark Graphics, a product service line of
Halliburton Halliburton Company is an American multinational corporation responsible for most of the world's hydraulic fracturing operations. In 2009, it was the world's second largest oil field service company. It has operations in more than 70 countries ...
. Nexus will gradually replace VIP, or Desktop VIP, Landmark's earlier generation of simulator. * Rock Flow Dynamics tNavigator supports black oil, compositional and thermal compositional simulations for workstations and High Performance Computing clusters * Plano Research Corporation FlowSim is a fully implicit 3-phase, 3-D, black oil and compositional finite difference reservoir simulator with LGRs, dual porosity dual permeability, and parallel capabilities. * GrailQuest's ReservoirGrail employs a patented approach called Time Dynamic Volumetric Balancing to simulate reservoirs during primary and secondary recovery. * Gemini Solutions Merlin is a fully implicit 3-Phase finite difference reservoir simulator originally developed at the Texaco research department and currently used by the
Bureau of Ocean Energy Management The Bureau of Ocean Energy Management (BOEM) is an agency within the United States Department of the Interior, established in 2010 by Secretarial Order. The Outer Continental Shelf Lands Act (OCSLA) states: "...the outer Continental Shelf is a v ...
and
Bureau of Safety and Environmental Enforcement The Bureau of Safety and Environmental Enforcement (BSEE "Bessie") is an agency under the United States Department of the Interior. Established in 2011, BSEE is the lead agency in charge of improving safety and ensuring environmental protection r ...
to calculate Worst Case Discharge rates and burst/collapse pressures on casing shoes and
blowout preventer A blowout preventer (BOP) (pronounced B-O-P, not "bop") is a specialized valve or similar mechanical device, used to seal, control and monitor oil well, oil and gas wells to prevent Blowout (well drilling), blowouts, the uncontrolled release of ...
s. * Under Palm Trees' DeepSim is a fully implicit, 3-phase, compositional finite difference reservoir simulator for the Android phone and tablet platform. * TTA/PetroStudies offers a full-fledged black oil simulator, Exodus, with assisted history matching module (Revelations) that can vary porosity/permeability/structure/netpay/initial pressure/saturations/contact depths to match wells' observed rates/cumulatives/pressures. Revelations runs multiple cases on shared network computers. Exotherm offers thermal simulation of SAGD, CSS with discretized wellbore flow up to surface. * Meera simulation is AI-Physics hybrid reservoir simulation production forecasting tool for operation planning and budgeting by Target Solutions LLC.


Application

Reservoir simulation is ultimately used for forecasting future oil production, decision making, and reservoir management. The state of the art framework for reservoir management is closed-loop field development (CLFD) optimization which utilizes reservoir simulation (together with geostatistics, data assimilation, and selection of representative models) for optimal reservoir operations.


See also

* Black-oil equations * Reservoir modeling *
Geologic modeling Geologic modelling, geological modelling or geomodelling is the applied science of creating digitizing, computerized representations of portions of the Earth's crust (geology), crust based on geophysical and geological observations made on and be ...
* Petroleum engineering * Computer simulation * Seismic to simulation


References

* Aziz, K. and Settari, A., ''Petroleum Reservoir Simulation'', 1979, Applied Science Publishers. * Ertekin, T, Abou-Kassem, J.H. and G.R. King, ''Basic Applied Reservoir Simulation'', SPE Textbook Vol 10, 2001. * Fanchi, J., ''Principles of Applied Reservoir Simulation'', 4th Edition, Elsevier GPP, 2018. * Mattax, C.C. and Dalton, R. L, ''Reservoir Simulation'', SPE Monograph Volume 13, 1990. * Holstein, E. (Editor), ''Petroleum Engineering Handbook'', Volume V(b), Chapt 17, Reservoir Engineering, 2007. * Warner, H. (Editor), ''Petroleum Engineering Handbook'', Volume VI, Chapter 6, Coalbed Methane, 2007. * Carlson, M., ''Practical Reservoir Simulation'', 2006, PennWell Corporation. * R. E. Ewing, ''The Mathematics of Reservoir Simulation'' Other references


External links

*
Software for reservoir simulation
{{Petroleum industry Petroleum production Simulation