Relative isotopic mass
   HOME

TheInfoList



OR:

The atomic mass (''m''a or ''m'') is the mass of an atom. Although the SI unit of mass is the
kilogram The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
(symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1 Da is defined as of the mass of a free
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 i ...
atom at rest in its ground state. The
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and neutrons of the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
account for nearly all of the total mass of atoms, with the electrons and
nuclear binding energy Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the atomic nucleus, nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable n ...
making minor contributions. Thus, the numeric value of the atomic mass when expressed in daltons has nearly the same value as the mass number. Conversion between mass in kilograms and mass in daltons can be done using the atomic mass constant m_= = 1\ \rm . The formula used for conversion is: :1\ = m_

= 1.660\ 539\ 066\ 60(50)\times 10^\ \mathrm ,
where M_ is the molar mass constant, N_ is the Avogadro constant, and M(^\mathrm) is the experimentally determined molar mass of carbon-12. The relative isotopic mass (see section below) can be obtained by dividing the atomic mass ''m''a of an isotope by the atomic mass constant ''m''u yielding a dimensionless value. Thus, the atomic mass of a carbon-12 atom is by definition, but the relative isotopic mass of a carbon-12 atom is simply 12. The sum of ''relative isotopic masses'' of all atoms in a molecule is the ''relative molecular'' ''mass.'' The atomic mass of an isotope and the ''relative isotopic mass'' refers to a certain specific isotope of an element. Because substances are usually not isotopically pure, it is convenient to use the ''elemental atomic mass'' which is the average ( mean) atomic mass of an element, weighted by the abundance of the isotopes. The dimensionless (standard) atomic weight is the weighted mean relative isotopic mass of a (typical naturally occurring) mixture of isotopes. The atomic mass of atoms, ions, or atomic nuclei is slightly less than the sum of the masses of their constituent protons, neutrons, and electrons, due to binding energy mass loss (per ).


Relative isotopic mass

Relative ''isotopic'' mass (a property of a single atom) is not to be confused with the averaged quantity atomic weight (see above), that is an average of values for many atoms in a given sample of a chemical element. While atomic mass is an absolute mass, relative isotopic mass is a dimensionless number with no units. This loss of units results from the use of a scaling ratio with respect to a carbon-12 standard, and the word "relative" in the term "relative isotopic mass" refers to this scaling ''relative'' to carbon-12. The relative isotopic mass, then, is the mass of a given isotope (specifically, any single
nuclide A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
), when this value is scaled by the mass of
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 i ...
, where the latter has to be determined experimentally. Equivalently, the relative isotopic mass of an isotope or nuclide is the mass of the isotope relative to 1/12 of the mass of a carbon-12 atom. For example, the relative isotopic mass of a carbon-12 atom is exactly 12. For comparison, the atomic mass of a carbon-12 atom is exactly 12 daltons. Alternately, the atomic mass of a carbon-12 atom may be expressed in any other mass units: for example, the atomic mass of a carbon-12 atom is . As is the case for the related ''atomic mass'' when expressed in daltons, the relative isotopic mass numbers of nuclides other than carbon-12 are not whole numbers, but are always close to whole numbers. This is discussed fully below.


Similar terms for different quantities

The atomic mass or relative isotopic mass are sometimes confused, or incorrectly used, as synonyms of relative atomic mass (also known as atomic weight) or the
standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, is ...
(a particular variety of atomic weight, in the sense that it is standardized). However, as noted in the introduction, atomic mass is an absolute mass while all other terms are dimensionless. Relative atomic mass and standard atomic weight represent terms for (abundance-weighted) averages of relative atomic masses in elemental samples, not for single nuclides. As such, relative atomic mass and standard atomic weight often differ numerically from the relative isotopic mass. The atomic mass (relative isotopic mass) is defined as the mass of a single atom, which can only be one isotope (nuclide) at a time, and is not an abundance-weighted average, as in the case of relative atomic mass/atomic weight. The atomic mass or relative isotopic mass of each isotope and nuclide of a chemical element is, therefore, a number that can in principle be measured to high precision, since every specimen of such a nuclide is expected to be exactly identical to every other specimen, as all atoms of a given type in the same energy state, and every specimen of a particular nuclide, are expected to be exactly identical in mass to every other specimen of that nuclide. For example, every atom of oxygen-16 is expected to have exactly the same atomic mass (relative isotopic mass) as every other atom of oxygen-16. In the case of many elements that have one naturally occurring isotope ( mononuclidic elements) or one dominant isotope, the difference between the atomic mass of the most common isotope, and the (standard) relative atomic mass or (standard) atomic weight can be small or even nil, and does not affect most bulk calculations. However, such an error can exist and even be important when considering individual atoms for elements that are not mononuclidic. For non-mononuclidic elements that have more than one common isotope, the numerical difference in relative atomic mass (atomic weight) from even the most common relative isotopic mass, can be half a mass unit or more (e.g. see the case of chlorine where atomic weight and standard atomic weight are about 35.45). The atomic mass (relative isotopic mass) of an uncommon isotope can differ from the relative atomic mass, atomic weight, or standard atomic weight, by several mass units. Relative isotopic masses are always close to whole-number values, but never (except in the case of carbon-12) exactly a whole number, for two reasons: *protons and neutrons have different masses, and different nuclides have different ratios of protons and neutrons. *atomic masses are reduced, to different extents, by their binding energies. The ratio of atomic mass to mass number (number of nucleons) varies from for 56Fe to for 1H. Any
mass defect Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always ...
due to
nuclear binding energy Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the atomic nucleus, nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable n ...
is experimentally a small fraction (less than 1%) of the mass of an equal number of free nucleons. When compared to the average mass per nucleon in carbon-12, which is moderately strongly-bound compared with other atoms, the mass defect of binding for most atoms is an even smaller fraction of a dalton ( unified atomic mass unit, based on carbon-12). Since free protons and neutrons differ from each other in mass by a small fraction of a dalton (), rounding the relative isotopic mass, or the atomic mass of any given nuclide given in daltons to the nearest whole number, always gives the nucleon count, or mass number. Additionally, the neutron count (
neutron number The neutron number, symbol ''N'', is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: . The difference between the neutron number and the atomic number is known as the neutron excess: . ...
) may then be derived by subtracting the number of protons ( atomic number) from the mass number (nucleon count).


Mass defects in atomic masses

The amount that the ratio of atomic masses to mass number deviates from 1 is as follows: the deviation starts positive at hydrogen-1, then decreases until it reaches a local minimum at helium-4. Isotopes of lithium, beryllium, and boron are less strongly bound than helium, as shown by their increasing mass-to-mass number ratios. At carbon, the ratio of mass (in daltons) to mass number is defined as 1, and after carbon it becomes less than one until a minimum is reached at
iron-56 Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. N ...
(with only slightly higher values for iron-58 and nickel-62), then increases to positive values in the heavy isotopes, with increasing atomic number. This corresponds to the fact that
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
in an element heavier than zirconium produces energy, and fission in any element lighter than
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has sim ...
requires energy. On the other hand, nuclear fusion of two atoms of an element lighter than scandium (except for helium) produces energy, whereas fusion in elements heavier than calcium requires energy. The fusion of two atoms of 4He yielding beryllium-8 would require energy, and the beryllium would quickly fall apart again. 4He can fuse with tritium (3H) or with 3He; these processes occurred during Big Bang nucleosynthesis. The formation of elements with more than seven nucleons requires the fusion of three atoms of 4He in the
triple alpha process The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. Triple-alpha process in stars Helium accumulates in the cores of stars as a result of the proton–pro ...
, skipping over lithium, beryllium, and boron to produce carbon-12. Here are some values of the ratio of atomic mass to mass number:


Measurement of atomic masses

Direct comparison and measurement of the masses of atoms is achieved with
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
.


Relationship between atomic and molecular masses

Similar definitions apply to molecules. One can calculate the molecular mass of a compound by adding the atomic masses (not the standard atomic weights) of its constituent atoms. Conversely, the molar mass is usually computed from the
standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, is ...
s (not the atomic or nuclide masses). Thus, molecular mass and molar mass differ slightly in numerical value and represent different concepts. Molecular mass is the mass of a molecule, which is the sum of its constituent atomic masses. Molar mass is an average of the masses of the constituent molecules in a chemically pure but isotopically heterogeneous ensemble. In both cases, the multiplicity of the atoms (the number of times it occurs) must be taken into account, usually by multiplication of each unique mass by its multiplicity.


History

The first scientists to determine relative atomic masses were
John Dalton John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He is best known for introducing the atomic theory into chemistry, and for his research into colour blindness, which he had. Colour b ...
and Thomas Thomson between 1803 and 1805 and Jöns Jakob Berzelius between 1808 and 1826. Relative atomic mass (''Atomic weight'') was originally defined relative to that of the lightest element, hydrogen, which was taken as 1.00, and in the 1820s,
Prout's hypothesis Prout's hypothesis was an early 19th-century attempt to explain the existence of the various chemical elements through a hypothesis regarding the internal structure of the atom. In 1815 and 1816, the English chemist William Prout published two p ...
stated that atomic masses of all elements would prove to be exact multiples of that of hydrogen. Berzelius, however, soon proved that this was not even approximately true, and for some elements, such as chlorine, relative atomic mass, at about 35.5, falls almost exactly halfway between two integral multiples of that of hydrogen. Still later, this was shown to be largely due to a mix of isotopes, and that the atomic masses of pure isotopes, or
nuclide A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
s, are multiples of the hydrogen mass, to within about 1%. In the 1860s, Stanislao Cannizzaro refined relative atomic masses by applying Avogadro's law (notably at the Karlsruhe Congress of 1860). He formulated a law to determine relative atomic masses of elements: ''the different quantities of the same element contained in different molecules are all whole multiples of the atomic weight'' and determined relative atomic masses and molecular masses by comparing the vapor density of a collection of gases with molecules containing one or more of the chemical element in question. In the 20th century, until the 1960s, chemists and physicists used two different atomic-mass scales. The chemists used an "atomic mass unit" (amu) scale such that the natural mixture of oxygen isotopes had an atomic mass 16, while the physicists assigned the same number 16 to only the atomic mass of the most common oxygen isotope (16O, containing eight protons and eight neutrons). However, because
oxygen-17 Oxygen-17 (17O) is a low-abundance, natural, stable isotope of oxygen (0.0373% in seawater; approximately twice as abundant as deuterium). As the only stable isotope of oxygen possessing a nuclear spin (+5/2) and a favorable characteristic of fi ...
and oxygen-18 are also present in natural oxygen this led to two different tables of atomic mass. The unified scale based on carbon-12, 12C, met the physicists' need to base the scale on a pure isotope, while being numerically close to the chemists' scale. This was adopted as the 'unified atomic mass unit'. The current International System of Units (SI) primary recommendation for the name of this unit is the dalton and symbol 'Da'. The name 'unified atomic mass unit' and symbol 'u' are recognized names and symbols for the same unit.Bureau International des Poids et Mesures (2019):
The International System of Units (SI)
', 9th edition, English version, page 134. Available at th
BIPM website
The term ''atomic weight'' is being phased out slowly and being replaced by ''relative atomic mass'', in most current usage. This shift in nomenclature reaches back to the 1960s and has been the source of much debate in the scientific community, which was triggered by the adoption of the unified atomic mass unit and the realization that weight was in some ways an inappropriate term. The argument for keeping the term "atomic weight" was primarily that it was a well understood term to those in the field, that the term "atomic mass" was already in use (as it is currently defined) and that the term "relative atomic mass" might be easily confused with ''relative isotopic mass'' (the mass of a single atom of a given nuclide, expressed dimensionlessly relative to 1/12 of the mass of carbon-12; see section above). In 1979, as a compromise, the term "relative atomic mass" was introduced as a secondary synonym for atomic weight. Twenty years later the primacy of these synonyms was reversed, and the term "relative atomic mass" is now the preferred term. However, the term "''standard'' atomic weights" (referring to the standardized expectation atomic weights of differing samples) has not been changed, because simple replacement of "atomic weight" with "relative atomic mass" would have resulted in the term "standard relative atomic mass."


See also

* Atomic number * Atomic mass unit * Isotope * Isotope geochemistry * Molecular mass *
Jean Stas Jean Servais Stas (21 August 1813 – 13 December 1891) was a Belgian analytical chemist who co-discovered the atomic weight of carbon. Life and work Stas was born in Leuven and trained initially as a physician. He later switched to chemistr ...


References


External links


NIST relative atomic masses of all isotopes and the standard atomic weights of the elements

AME2003 Atomic Mass Evaluation
from the National Nuclear Data Center {{DEFAULTSORT:Atomic Mass Atoms Mass Chemical properties Stoichiometry