Regenerative thermal oxidiser
   HOME

TheInfoList



OR:

A thermal oxidizer (also known as thermal oxidiser, or thermal incinerator) is a process unit for
air pollution Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different typ ...
control in many
chemical A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., w ...
plants that decomposes hazardous gases at a high temperature and releases them into the atmosphere.


Principle

Thermal oxidizers are typically used to destroy
hazardous air pollutant The National Emission Standards for Hazardous Air Pollutants (NESHAP) are air pollution standards issued by the United States Environmental Protection Agency (EPA). The standards, authorized by the Clean Air Act, are for pollutants not covered by ...
s (HAPs) and
volatile organic compound Volatile organic compounds (VOCs) are organic compounds that have a high vapour pressure at room temperature. High vapor pressure correlates with a low boiling point, which relates to the number of the sample's molecules in the surrounding air, a ...
s (VOCs) from industrial air streams. These pollutants are generally hydrocarbon based and when destroyed via thermal combustion they are chemically oxidized to form CO2 and H2O. Three main factors in designing the effective thermal oxidizers are temperature, residence time, and turbulence. The temperature needs to be high enough to ignite the waste gas. Most organic compounds ignite at the temperature between and . To ensure near destruction of hazardous gases, most basic oxidizers are operated at much higher temperature levels. When catalyst is used, the operating temperature range may be lower. Residence time is to ensure that there is enough time for the combustion reaction to occur. The turbulence factor is the mixture of combustion air with the hazardous gases.


Technologies


Direct fired thermal oxidizer – afterburner

The simplest technology of thermal oxidation is direct-fired thermal oxidizer. A process stream with hazardous gases is introduced into a firing box through or near the burner and enough residence time is provided to get the desired destruction removal efficiency (DRE) of the VOCs. Most direct-fired thermal oxidizers operate at temperature levels between and with air flow rates of 0.24 to 24 standard cubic meters per second. Also called
afterburner An afterburner (or reheat in British English) is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and co ...
s in the cases where the input gases come from a process where combustion is incomplete, these systems are the least capital intensive, and can be integrated with downstream boilers and heat exchangers to optimize fuel efficiency. Thermal Oxidizers are best applied where there is a very high concentration of VOCs to act as the fuel source (instead of natural gas or oil) for complete combustion at the targeted operating temperature.


Regenerative thermal oxidizer (RTO)

One of today's most widely accepted air pollution control technologies across industry is a regenerative thermal oxidizer, commonly referred to as a RTO. RTOs use a ceramic bed which is heated from a previous oxidation cycle to preheat the input gases to partially oxidize them. The preheated gases enter a combustion chamber that is heated by an external fuel source to reach the target oxidation temperature which is in the range between and . The final temperature may be as high as for applications that require maximum destruction. The air flow rates are 2.4 to 240 standard cubic meters per second. RTOs are very versatile and extremely efficient – thermal efficiency can reach 95%. They are regularly used for abating solvent fumes, odours, etc. from a wide range of industries. Regenerative Thermal Oxidizers are ideal in a range of low to high VOC concentrations up to 10 g/m3 solvent. There are currently many types of Regenerative Thermal Oxidizers on the market with the capability of 99.5+% Volatile Organic Compound (VOC) oxidization or destruction efficiency. The ceramic heat exchanger(s) in the towers can be designed for thermal efficiencies as high as 97+%.


Ventilation air methane thermal oxidizer (VAMTOX)

Ventilation air methane thermal oxidizers are used to destroy methane in the exhaust air of underground coal mine shafts. Methane is a greenhouse gas and, when oxidized via thermal combustion, is chemically altered to form CO2 and H2O. CO2 is 25 times less potent than methane when emitted into the atmosphere with regards to global warming. Concentrations of methane in mine ventilation exhaust air of coal and trona mines are very dilute; typically below 1% and often below 0.5%. VAMTOX units have a system of valves and dampers that direct the air flow across one or more ceramic filled bed(s). On start-up, the system preheats by raising the temperature of the heat exchanging ceramic material in the bed(s) at or above the auto-oxidation temperature of methane , at which time the preheating system is turned off and mine exhaust air is introduced. Then the methane-filled air reaches the preheated bed(s), releasing the heat from combustion. This heat is then transferred back to the bed(s), thereby maintaining the temperature at or above what is necessary to support auto-thermal operation.


Thermal recuperative oxidizer

A less commonly used thermal oxidizer technology is a thermal recuperative oxidizer. Thermal recuperative oxidizers have a primary and/or secondary heat exchanger within the system. A primary heat exchanger preheats the incoming dirty air by recuperating heat from the exiting clean air. This is done by a
shell and tube heat exchanger A shell and tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this ty ...
or a
plate heat exchanger A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This has a major advantage over a conventional heat exchanger in that the fluids are exposed to a much larger surface area because the fl ...
. As the incoming air passes on one side of the metal tube or plate, hot clean air from the combustion chamber passes on the other side of the tube or plate and heat is transferred to the incoming air through the process of conduction using the metal as the medium of heat transfer. In a secondary heat exchanger the same concept applies for heat transfer, but the air being heated by the outgoing clean process stream is being returned to another part of the plant – perhaps back to the process.


Biomass fired thermal oxidizer

Biomass, such as wood chips, can be used as the fuel for a thermal oxidizer. The biomass is then gasified and the stream with hazardous gases is mixed with the biomass gas in a firing box. Sufficient turbulence, retention time, oxygen content and temperature will ensure destruction of the VOC's. Such biomass fired thermal oxidizer has been installed at Warwick Mills,
New Hampshire New Hampshire is a state in the New England region of the northeastern United States. It is bordered by Massachusetts to the south, Vermont to the west, Maine and the Gulf of Maine to the east, and the Canadian province of Quebec to the nor ...
. The inlet concentrations are between 3000–10.000 ppm VOC. The outlet concentration of VOC are below 3 ppm, thus having a VOC destruction efficiency of 99.8–99.9%.


Flameless thermal oxidizer (FTO)

In a flameless thermal oxidizer system waste gas, ambient air, and auxiliary fuel are premixed prior to passing the combined gaseous mixture through a preheated inert ceramic media bed. Through the transfer of heat from the ceramic media to the gaseous mixture the organic compounds in the gas are oxidized to innocuous byproducts, i.e., carbon dioxide (CO2) and water vapor (H2O) while also releasing heat into the ceramic media bed. The gas mixture temperature is kept below the lower flammability limit based on the percentages of each organic species present. Flameless thermal oxidizers are designed to operate safely and reliably below the composite LFL while maintaining a constant operating temperature. Waste gas streams experience multiple seconds of residence time at high temperatures leading to measured destruction removal efficiencies that exceed 99.9999%. Premixing all of the gases prior to treatment eliminates localized high temperatures which leads to thermal
NOx In atmospheric chemistry, is shorthand for nitric oxide () and nitrogen dioxide (), the nitrogen oxides that are most relevant for air pollution. These gases contribute to the formation of smog and acid rain, as well as affecting tropo ...
typically below 2 ppmV. Flameless thermal oxidizer technology was originally developed at the U.S. Department of Energy to more efficiently convert energy in burners, process heaters, and other thermal systems.


Fluidized bed concentrator (FBC)

In a
Fluidized bed concentrator A fluidized bed concentrator (FBC) is an industrial process for the treatment of exhaust air. The system uses a bed of activated carbon beads to adsorb volatile organic compounds (VOCs) from the exhaust gas. Evolving from the previous fixed-bed an ...
(FBC), a bed of activated carbon beads to adsorb volatile organic compounds (VOCs) from the exhaust gas. Evolving from the previous fixed-bed and carbon rotor concentrators, the FBC system forces the VOC-laden air through several perforated steel trays, increasing the velocity of the air and allowing the sub-millimeter carbon beads to fluidize, or behave as if suspended in a liquid. This increases the surface area of the carbon-gas interaction, making it more effective at capturing VOCs.


Catalytic oxidizer

Catalytic oxidizer (also known as catalytic incinerator) is another category of oxidation systems that is similar to typical thermal oxidizers, but the catalytic oxidizers use a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
to promote the oxidation. Catalytic oxidation occurs through a chemical reaction between the VOC hydrocarbon molecules and a precious-metal catalyst bed that is internal to the oxidizer system. A catalyst is a substance that is used to accelerate the rate of a chemical reaction, allowing the reaction to occur in a normal temperature range between and .


Regenerative catalytic oxidizer (RCO)

The catalyst can be used in a Regenerative Thermal Oxidizer (RTO) to allow lower operating temperatures. This is also called Regenerative Catalytic Oxidizer or RCO. For example, the thermal ignition temperature of
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
is normally . By utilizing a suitable oxidation catalyst, the ignition temperature can be reduced to around . This can result in lower operating costs than a RTO. Most systems operate within the to degree range. Some systems are designed to operate both as RCOs and RTOs. When these systems are used special design considerations are utilized to reduce the probability of overheating (dilution of inlet gas or recycling), as these high temperatures would deactivate the catalyst, e.g. by
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
of the active material.


Recuperative catalytic oxidizer

Catalytic oxidizers can also be in the form of recuperative heat recovery to reduce the fuel requirement. In this form of heat recovery, the hot exhaust gases from the oxidizer pass through a heat exchanger to heat the new incoming air to the oxidizer.


References

{{DEFAULTSORT:Thermal Oxidizer Chemical equipment Air pollution control systems