Reflection (mathematics)
   HOME

TheInfoList



OR:

In mathematics, a reflection (also spelled reflexion) is a mapping from a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
to itself that is an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
with a hyperplane as a set of fixed points; this set is called the
axis An axis (plural ''axes'') is an imaginary line around which an object rotates or is symmetrical. Axis may also refer to: Mathematics * Axis of rotation: see rotation around a fixed axis * Axis (mathematics), a designator for a Cartesian-coordinat ...
(in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an
involution Involution may refer to: * Involute, a construction in the differential geometry of curves * '' Agricultural Involution: The Processes of Ecological Change in Indonesia'', a 1963 study of intensification of production through increased labour inpu ...
: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. The term ''reflection'' is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. Such isometries have a set of fixed points (the "mirror") that is an
affine subspace In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, but is possibly smaller than a hyperplane. For instance a reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under it would look like a d. This operation is also known as a central inversion , and exhibits Euclidean space as a
symmetric space In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, ...
. In a
Euclidean vector space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane. Some mathematicians use "flip" as a synonym for "reflection".


Construction

In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure. To reflect point through the line using compass and straightedge, proceed as follows (see figure): * Step 1 (red): construct a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
with center at and some fixed radius to create points and on the line , which will be
equidistant A point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal. In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is the ...
from . * Step 2 (green): construct circles centered at and having radius . and will be the points of intersection of these two circles. Point is then the reflection of point through line .


Properties

The matrix for a reflection is orthogonal with determinant −1 and
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
s −1, 1, 1, ..., 1. The product of two such matrices is a special orthogonal matrix that represents a rotation. Every rotation is the result of reflecting in an even number of reflections in hyperplanes through the origin, and every
improper rotation In geometry, an improper rotation,. also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicul ...
is the result of reflecting in an odd number. Thus reflections generate the orthogonal group, and this result is known as the
Cartan–Dieudonné theorem In mathematics, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an ''n''-dimensional symmetric bilinear space can be described as the composition of at most ''n'' ...
. Similarly the Euclidean group, which consists of all isometries of Euclidean space, is generated by reflections in affine hyperplanes. In general, a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
generated by reflections in affine hyperplanes is known as a
reflection group In group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent c ...
. The finite groups generated in this way are examples of
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refle ...
s.


Reflection across a line in the plane

Reflection across a line through the origin in
two dimensions In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as ...
can be described by the following formula :\operatorname_l(v) = 2\fracl - v, where v denotes the vector being reflected, l denotes any vector in the line across which the reflection is performed, and v\cdot l denotes the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alge ...
of v with l. Note the formula above can also be written as :\operatorname_l(v) = 2\operatorname_l(v) - v, saying that a reflection of v across l is equal to 2 times the projection of v on l, minus the vector v. Reflections in a line have the eigenvalues of 1, and −1.


Reflection through a hyperplane in ''n'' dimensions

Given a vector v in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
\mathbb R^n, the formula for the reflection in the hyperplane through the origin, orthogonal to a, is given by :\operatorname_a(v) = v - 2\fraca, where v\cdot a denotes the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alge ...
of v with a. Note that the second term in the above equation is just twice the
vector projection The vector projection of a vector on (or onto) a nonzero vector , sometimes denoted \operatorname_\mathbf \mathbf (also known as the vector component or vector resolution of in the direction of ), is the orthogonal projection of onto a straig ...
of v onto a. One can easily check that *, if v is parallel to a, and *, if v is perpendicular to . Using the geometric product, the formula is :\operatorname_a(v) = -\frac . Since these reflections are isometries of Euclidean space fixing the origin they may be represented by orthogonal matrices. The orthogonal matrix corresponding to the above reflection is the matrix :R = I-2\frac, where I denotes the n \times n identity matrix and a^T is the
transpose In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The tr ...
of a. Its entries are :R_ = \delta_ - 2\frac, where is the
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 & ...
. The formula for the reflection in the affine hyperplane v\cdot a=c not through the origin is :\operatorname_(v) = v - 2\fraca.


See also

*
Coordinate rotations and reflections In geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point ''P'' to its im ...
*
Householder transformation In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformati ...
* Inversive geometry * Plane of rotation *
Reflection mapping In computer graphics, environment mapping, or reflection mapping, is an efficient image-based lighting technique for approximating the appearance of a reflective surface by means of a precomputed texture. The texture is used to store the image of ...
*
Reflection group In group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent c ...


Notes


References

* * *


External links


Reflection in Line
at cut-the-knot
Understanding 2D Reflection
an
Understanding 3D Reflection
by Roger Germundsson,
The Wolfram Demonstrations Project The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
. {{Authority control Euclidean symmetries Functions and mappings Linear operators Transformation (function)