Reaction force
   HOME

TheInfoList



OR:

As described by the third of
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in mo ...
of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, all forces occur in pairs such that if one object exerts a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
on another object, then the second object exerts an equal and opposite reaction force on the first. The third law is also more generally stated as: "To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts."This translation of the third law and the commentary following it can be found in the " Principia" o
page 20 of volume 1 of the 1729 translation
The attribution of which of the two forces is the action and which is the reaction is arbitrary. Either of the two can be considered the action, while the other is its associated reaction.


Examples


Interaction with ground

When something is exerting force on the ground, the ground will push back with equal force in the opposite direction. In certain fields of applied physics, such as
biomechanics Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of ...
, this force by the ground is called '
ground reaction force In physics, and in particular in biomechanics, the ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. For example, a person standing motionless on the ground exerts a contact force on it (equal to the perso ...
'; the force by the object on the ground is viewed as the 'action'. When someone wants to jump, he or she exerts additional downward force on the ground ('action'). Simultaneously, the ground exerts upward force on the person ('reaction'). If this upward force is greater than the person's weight, this will result in upward acceleration. When these forces are perpendicular to the ground, they are also called a
normal force In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance '' normal'' is used in the geometric sense and means perpendicular, as oppos ...
. Likewise, the spinning wheels of a vehicle attempt to slide backward across the ground. If the ground is not too slippery, this results in a pair of
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
forces: the 'action' by the wheel on the ground in backward direction, and the 'reaction' by the ground on the wheel in forward direction. This forward force propels the vehicle.


Gravitational forces

The
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
, among other
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s, orbits the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
because the Sun exerts a gravitational pull that acts as a
centripetal force A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous c ...
, holding the Earth to it, which would otherwise go shooting off into space. If the Sun's pull is considered an action, then Earth simultaneously exerts a reaction as a gravitational pull on the Sun. Earth's pull has the same amplitude as the Sun but in the opposite direction. Since the Sun's
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
is so much larger than Earth's, the Sun does not generally appear to react to the pull of Earth, but in fact it does, as demonstrated in the animation (not to precise scale). A correct way of describing the combined motion of both objects (ignoring all other celestial bodies for the moment) is to say that they both orbit around the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
, referred to in astronomy as the
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
, of the combined system.


Supported mass

Any mass on earth is pulled down by the
gravitational force In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
of the earth; this force is also called its
weight In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar qua ...
. The corresponding 'reaction' is the gravitational force that mass exerts on the planet. If the object is supported so that it remains at rest, for instance by a cable from which it is hanging, or by a surface underneath, or by a liquid on which it is floating, there is also a support force in upward direction (
tension Tension may refer to: Science * Psychological stress * Tension (physics), a force related to the stretching of an object (the opposite of compression) * Tension (geology), a stress which stretches rocks in two opposite directions * Voltage or el ...
force,
normal force In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance '' normal'' is used in the geometric sense and means perpendicular, as oppos ...
,
buoyant Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pr ...
force, respectively). This support force is an 'equal and opposite' force; we know this not because of Newton's third law, but because the object remains at rest, so that the forces must be balanced. To this support force there is also a 'reaction': the object pulls down on the supporting cable, or pushes down on the supporting surface or liquid. In this case, there are therefore four forces of equal magnitude: * F1. gravitational force by earth on object (downward) * F2. gravitational force by object on earth (upward) * F3. force by support on object (upward) * F4. force by object on support (downward) Forces F1 and F2 are equal, due to Newton's third law; the same is true for forces F3 and F4. Forces F1 and F3 are equal if and only if the object is in equilibrium, and no other forces are applied. (This has nothing to do with Newton's third law.)


Mass on a spring

If a mass is hanging from a spring, the same considerations apply as before. However, if this system is then perturbed (e.g., the mass is given a slight kick upwards or downwards, say), the mass starts to oscillate up and down. Because of these accelerations (and subsequent decelerations), we conclude from Newton's second law that a net force is responsible for the observed change in velocity. The gravitational force pulling down on the mass is no longer equal to the upward elastic force of the spring. In the terminology of the previous section, F1 and F3 are no longer equal. However, it is still true that F1 = F2 and F3 = F4, as this is required by Newton's third law.


Causal misinterpretation

The terms 'action' and 'reaction' have the misleading suggestion of
causality Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
, as if the 'action' is the cause and 'reaction' is the effect. It is therefore easy to think of the second force as being there because of the first, and even happening some time after the first. This is incorrect; the forces are perfectly simultaneous, and are there for the same reason. When the forces are caused by a person's volition (e.g. a soccer player kicks a ball), this volitional cause often leads to an asymmetric interpretation, where the force by the player on the ball is considered the 'action' and the force by the ball on the player, the 'reaction'. But physically, the situation is symmetric. The forces on ball and player are both explained by their nearness, which results in a pair of contact forces (ultimately due to electric repulsion). That this nearness is caused by a decision of the player has no bearing on the physical analysis. As far as the physics is concerned, the labels 'action' and 'reaction' can be flipped.


'Equal and opposite'

One problem frequently observed by physics educators is that students tend to apply Newton's third law to pairs of 'equal and opposite' forces acting on the same object. This is incorrect; the third law refers to forces on two different objects. In contrast, a book lying on a table is subject to a downward gravitational force (exerted by the earth) and to an upward normal force by the table, both forces acting on the same book. Since the book is not accelerating, these forces must be exactly balanced, according to Newton's second law. They are therefore 'equal and opposite', yet they are acting on the same object, hence they are not action-reaction forces in the sense of Newton's third law. The actual action-reaction forces in the sense of Newton's third law are the book pushing down on the table and the book's upward gravitational force on the earth. Moreover, the forces acting on the book are not always equally strong; they will be different if the book is pushed down by a third force, or if the table is slanted, or if the table-and-book system is in an accelerating elevator. The case of any number of forces acting on the same object is covered by considering the sum of all forces. A possible cause of this problem is that the third law is often stated in an abbreviated form: ''For every action there is an equal and opposite reaction,'' without the details, namely that these forces act on two different objects. Moreover, there is a causal connection between the weight of something and the normal force: if an object had no weight, it would not experience support force from the table, and the weight dictates how strong the support force will be. This causal relationship is not due to the third law but to other physical relations in the system.


Centripetal and centrifugal force

Another common mistake is to state that "the centrifugal force that an object experiences is the reaction to the centripetal force on that object." If an object were simultaneously subject to both a
centripetal force A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous c ...
and an equal and opposite
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is paralle ...
, the
resultant force In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant for ...
would vanish and the object could not experience a circular motion. The centrifugal force is sometimes called a
fictitious force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which trea ...
or pseudo force, to underscore the fact that such a force only appears when calculations or measurements are conducted in non-inertial reference frames.


See also

*
Ground reaction force In physics, and in particular in biomechanics, the ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. For example, a person standing motionless on the ground exerts a contact force on it (equal to the perso ...
*
Reactive centrifugal force In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force. In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on ...
*
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
*
Ibn Bajjah Abū Bakr Muḥammad ibn Yaḥyà ibn aṣ-Ṣā’igh at-Tūjībī ibn Bājja ( ar, أبو بكر محمد بن يحيى بن الصائغ التجيبي بن باجة), best known by his Latinised name Avempace (;  – 1138), was an A ...
*
Reaction engine A reaction engine is an engine or motor that produces thrust by expelling reaction mass, in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, re ...
/
jet engine A jet engine is a type of reaction engine discharging a fast-moving jet (fluid), jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition can include Rocket engine, rocket, Pump-jet, water jet, and ...
*
Shear force In solid mechanics, shearing forces are unaligned forces acting on one part of a body in a specific direction, and another part of the body in the opposite direction. When the forces are collinear (aligned with each other), they are called ...


References


Bibliography

* Feynman, R. P., Leighton and Sands (1970) ''
The Feynman Lectures on Physics ''The Feynman Lectures on Physics'' is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the Cali ...
'', Volume 1, Addison Wesley Longman, . * Resnick, R. and D. Halliday (1966) ''Physics, Part 1'', John Wiley & Sons, New York, 646 pp + Appendices. * Warren, J. W. (1965) ''The Teaching of Physics'', Butterworths, London,130 pp. {{DEFAULTSORT:Reaction (Physics) Classical mechanics Force