HOME
        TheInfoList






In computer graphics and digital photography, a raster graphics or bitmap image is a dot matrix data structure that represents a generally rectangular grid of pixels (points of color), viewable via a bitmapped display (monitor), paper, or other display medium. Raster images are stored in image files with varying dissemination, production, generation, and acquisition formats.

The printing and prepress industries know raster graphics as contones (from "continuous tones"). The opposite to contones is "line work", usually implemented as vector graphics in digital systems.[1]

A bitmap is a rectangular grid of pixels, with each pixel's color being specified by a number of bits.[2] A bitmap might be created for storage in the display's video memory[3] or as a device-independent bitmap file.[2] A raster is technically characterized by the width and height of the image in pixels and by the number of bits per pixel.

Common pixel formats are monochrome, gray scale, palettized, and full color, where color depth[2] determines the fidelity of the colors represented and color space determines the range of color coverage (which is often less than the full range of human color vision). High-resolution digital images are storage intensive, especially at high color-depths. The large CCD bitmapped sensor at the Vera C. Rubin Observatory captures 3.2 gigapixels in a single image (6.4 GB raw), over six color channels which exceed the spectral range of human color vision. During production, a raster image might exist at a variety of different resolutions and color-depths for reasons of storage and bandwidth management.

Transposing an image to covert raster organization (a relatively costly operation for packed formats with less than a byte per pixel); composing an additional raster line reflection (almost free), either before or afterwards, amounts to a 90° image rotation in one direction or the other.

Vector images (line work) can be rasterized (converted into pixels), and raster images vectorized (raster images converted into vector graphics), by software. In both cases some information is lost, although certain vectorization operations can recreate salient information, as in the case of optical character recognition.

Early mechanical televisions developed in the 1920s employed rasterization principles. Electronic television based on cathode-ray tube displays are raster scanned with horizontal rasters painted left to right, and the raster lines painted top to bottom (the top of a computer monitor is most commonly referenced to landscape orientation, while the top of a printed page is most commonly referenced to portrait orientation; going against the flow requires image rotation). Left-right within top-bottom remains the conventional pixel organization in the majority of bitmapped file formats and rasterized display interconnects such as VGA and DVI.

Many raster manipulations map directly onto the mathematical formalisms of linear algebra, where mathematical objects of matrix structure are of central concern.

Etymology

The word "raster" has its origins in the Latin rastrum (a rake), which is derived from radere (to scrape). It originates from the raster scan of cathode ray tube (CRT) video monitors, which paint the image line by line by magnetically or electrostatically steering a focused electron beam.[4] By association, it can also refer to a rectangular grid of pixels. The word rastrum is now used to refer to a device for drawing musical staff lines.

Applications

Computer displays

Most modern computers have bitmapped displays, where each on-screen pixel directly corresponds to a small number of bits in memory.[5] The screen is refreshed simply by scanning through pixels and coloring them according to each set of bits. The refresh

The printing and prepress industries know raster graphics as contones (from "continuous tones"). The opposite to contones is "line work", usually implemented as vector graphics in digital systems.[1]

A bitmap is a rectangular grid of pixels, with each pixel's color being specified by a number of bits.[2] A bitmap might be created for storage in the display's video memory[3] or as a device-independent bitmap file.[2] A raster is technically characterized by the width and height of the image in pixels and by the number of bits per pixel.

Common pixel formats are monochrome, gray scale, palettized, and full color, where color depth[2] determines the fidelity of the colors represented and color space determines the range of color coverage (which is often less than the full range of human color vision). High-resolution digital images are storage intensive, especially at high color-depths. The large CCD bitmapped sensor at the Vera C. Rubin Observatory captures 3.2 gigapixels in a single image (6.4 GB raw), over six color channels which exceed the spectral range of human color vision. During production, a raster image might exist at a variety of different resolutions and color-depths for reasons of storage and bandwidth management.

Vector images (line work) can be rasterized (converted into pixels), and raster images vectorized (raster images converted into vector graphics), by software. In both cases some information is lost, although certain vectorization operations can recreate salient information, as in the case of optical character recognition.

Early mechanical televisions developed in the 1920s employed rasterization principles. Electronic television based on cathode-ray tube displays are raster scanned with horizontal rasters painted left to right, and the raster lines painted top to bottom (the top of a computer monitor is most commonly referenced to landscape orientation, while the top of a printed page is most commonly referenced to portrait orientation; going against the flow requires image rotation). Left-right within top-bottom remains the conventional pixel organization in the majority o

Early mechanical televisions developed in the 1920s employed rasterization principles. Electronic television based on cathode-ray tube displays are raster scanned with horizontal rasters painted left to right, and the raster lines painted top to bottom (the top of a computer monitor is most commonly referenced to landscape orientation, while the top of a printed page is most commonly referenced to portrait orientation; going against the flow requires image rotation). Left-right within top-bottom remains the conventional pixel organization in the majority of bitmapped file formats and rasterized display interconnects such as VGA and DVI.

Many raster manipulations map directly onto the mathematical formalisms of linear algebra, where mathematical objects of matrix structure are of central concern.

The word "raster" has its origins in the Latin rastrum (a rake), which is derived from radere (to scrape). It originates from the raster scan of cathode ray tube (CRT) video monitors, which paint the image line by line by magnetically or electrostatically steering a focused electron beam.[4] By association, it can also refer to a rectangular grid of pixels. The word rastrum is now used to refer to a device for drawing musical staff lines.

Applications

Computer displays

Most modern computers have bitmapped displays, where each on-screen pixel directly corresponds to a small number of bits in memory.[5] The screen is refreshed simply by scanning through pixels and coloring them according to each set of bits. The refresh procedure, being speed critical, is often implemented by dedicated circuitry, often as a part of a graphics processing unit.

Using this approach, the computer contains an area of memory that holds all the data that are to be displayed. The central processor writes data into this region of memory and the video controller collects them from there. The bits of data stored in this block of memory are related to the eventual pattern of pixels that will be used to construct an image on the display.[6]

An early scanned display with raster computer graphics was invented in the late 1960s by A. Michael Noll at Bell Labs,[7] but its patent application filed February 5, 1970 was abandoned at the Supreme Court in 1977 over the issue of the patentability of computer software.Most modern computers have bitmapped displays, where each on-screen pixel directly corresponds to a small number of bits in memory.[5] The screen is refreshed simply by scanning through pixels and coloring them according to each set of bits. The refresh procedure, being speed critical, is often implemented by dedicated circuitry, often as a part of a graphics processing unit.

Using this approach, the computer contains an area of memory that holds all the data that are to be displayed. The central processor writes data into this region of memory and the video controller collects them from there. The bits of data stored in this block of memory are related to the eventual pattern of pixels that will be used to construct an image on the display.[6]

An early scanned display with raster computer graphics was invented in the late 1960s by A. Michael Noll at Bell Labs,[6]

An early scanned display with raster computer graphics was invented in the late 1960s by A. Michael Noll at Bell Labs,[7] but its patent application filed February 5, 1970 was abandoned at the Supreme Court in 1977 over the issue of the patentability of computer software.[8]

Most computer images are stored in raster graphics formats or compressed variations, including GIF, JPEG, and PNG, which are popular on the World Wide Web.[2][9] A raster data structure is based on a (usually rectangular, square-based) tessellation of the 2D plane into cells. In the example the cells of tessellation A are overlaid on the point pattern B resulting in an array C of quadrant counts representing the number of points in each cell. For purposes of visualization a lookup table has been used to color each of the cells in an image D. Here are the numbers as a simple vector in row/column order:

1 3 0 0 1 12 8 0 1 4 3 3 0 2 0 2 1 7 4 1 5 4 2 2 0 3 1 2 2 2 2 3 0 5 1 9 3 3 3 4 5 0 8 0 2 4 3 2 8 4 3 2 2 7 2 3 2 10 1 5 2 1 3 7

Finally, here is a run-length encoded representation of the raster, which has 55 positions:

values : 1 3 0 1 12 8 0 1 4 3 ...
lengths: 1 1 2 1 1 1 1 1 1 2 ...

This process clearly results in a loss of information, from the real-valued coordinates of the points, through the integer cell counts, to the ordinal colors, but there are also gains:


Three-dimensional voxel raster graphics are employed in video games and are also used in medical imaging such as run-length encoded representation of the raster, which has 55 positions:

values : 1 3 0 1 12 8 0 1 4 3 ...
lengths: 1 1 2 1 1 1 1 1 1 2 ...

This process clearly results in a loss of information, from the real-valued coordinates of the points, through the integer cell counts, to the ordinal colors, but there are also gains:


Three-dimensional voxel raster graphics are employed in video games and are also used in medical imaging such as MRI scanners.[10]

Geographic information systems

GIS data is commonly stored in a raster format to encode geographic data as the pixel values. Georeferencing information can

GIS data is commonly stored in a raster format to encode geographic data as the pixel values. Georeferencing information can also be associated with pixels.

Resolution