Radiation implosion
   HOME

TheInfoList



OR:

Radiation implosion is the compression of a target by the use of high levels of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. The major use for this technology is in fusion bombs and
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
research.


History

Radiation implosion was first developed by
Klaus Fuchs Klaus Emil Julius Fuchs (29 December 1911 – 28 January 1988) was a German theoretical physicist and atomic spy who supplied information from the American, British and Canadian Manhattan Project to the Soviet Union during and shortly af ...
and
John von Neumann John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest c ...
in the United States, as part of their work on the original "Classical Super" hydrogen bomb design. Their work resulted in a secret patent filed in 1946, and later given to the USSR by Fuchs as part of his nuclear espionage. However, their scheme was not the same as used in the final hydrogen bomb design, and neither the American nor the Soviet programs were able to make use of it directly in developing the hydrogen bomb (its value would become apparent only after the fact). A modified version of the Fuchs-von Neumann scheme was incorporated into the "George" shot of
Operation Greenhouse Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons (''hydrogen bombs''). Conducted at the new Pacific Proving Gro ...
. In 1951,
Stanislaw Ulam Stanisław Marcin Ulam (; 13 April 1909 – 13 May 1984) was a Polish-American scientist in the fields of mathematics and nuclear physics. He participated in the Manhattan Project, originated the Teller–Ulam design of thermonuclear weapon ...
had the idea to use hydrodynamic shock of a fission weapon to compress more fissionable material to incredible densities in order to make megaton-range, two-stage fission bombs. He then realized that this approach might be useful for starting a thermonuclear reaction. He presented the idea to
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care for ...
, who realized that radiation compression would be both faster and more efficient than mechanical shock. This combination of ideas, along with a fission "sparkplug" embedded inside of the fusion fuel, became what is known as the
Teller–Ulam design A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lo ...
for the hydrogen bomb.


Fission bomb radiation source

Most of the energy released by a
fission bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bomb ...
is in the form of
x-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10 nanometers, corresponding to frequencies in the range 30&nbs ...
. The spectrum is approximately that of a
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
at a temperature of 50,000,000
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
s (a little more than three times the temperature of the Sun's core). The amplitude can be modeled as a trapezoidal pulse with a one microsecond rise time, one microsecond plateau, and one microsecond fall time. For a 30 kiloton fission bomb, the total x-ray output would be 100 terajoules.


Radiation transport

In a Teller-Ulam bomb, the object to be imploded is called the "secondary". It contains fusion material, such as
lithium deuteride Lithium hydride is an inorganic compound with the formula Li H. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not solub ...
, and its outer layers are a material which is opaque to x-rays, such as
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
or
uranium-238 Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However ...
. In order to get the x-rays from the surface of the primary, the fission bomb, to the surface of the secondary, a system of "x-ray reflectors" is used. The reflector is typically a cylinder made of a material such as uranium. The primary is located at one end of the cylinder and the secondary is located at the other end. The interior of the cylinder is commonly filled with a foam which is mostly transparent to x-rays, such as
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the Aromatic hydrocarbon, aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin pe ...
. The term reflector is misleading, since it gives the reader an idea that the device works like a
mirror A mirror or looking glass is an object that reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the direction of the im ...
. Some of the x-rays are diffused or scattered, but the majority of the energy transport happens by a two-step process: the x-ray reflector is heated to a high temperature by the flux from the primary, and then it emits x-rays which travel to the secondary. Various classified methods are used to improve the performance of the reflection process{{Citation needed, date=November 2007. Some Chinese documents show that Chinese scientists used a different method to achieve radiation implosion. According to these documents, an X-ray lens, not a reflector, was used to transfer the energy from primary to secondary during the making of the first Chinese H-bomb.For example, se
Zhang paper
/ref>


The implosion process in nuclear weapons

The term "radiation implosion" suggests that the secondary is crushed by
radiation pressure Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is a ...
, and calculations show that while this pressure is very large, the pressure of the materials vaporized by the radiation is much larger. The outer layers of the secondary become so hot that they vaporize and fly off the surface at high speeds. The recoil from this surface layer ejection produces pressures which are an order of magnitude stronger than the simple radiation pressure. The so-called radiation implosion in thermonuclear weapons is therefore thought to be a radiation-powered
ablation Ablation ( la, ablatio – removal) is removal or destruction of something from an object by vaporization, chipping, erosive processes or by other means. Examples of ablative materials are described below, and include spacecraft material for ...
-drive implosion.


Laser radiation implosions

There has been much interest in the use of large
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
s to ignite small amounts of fusion material. This process is known as
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
(ICF). As part of that research, much information on radiation implosion technology has been declassified. When using optical lasers, there is a distinction made between "direct drive" and "indirect drive" systems. In a direct drive system, the laser beam(s) are directed onto the target, and the rise time of the laser system determines what kind of compression profile will be achieved. In an indirect drive system, the target is surrounded by a shell (called a Hohlraum) of some intermediate-Z material, such as
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
. The laser heats this shell to a temperature such that it emits x-rays, and these x-rays are then transported onto the fusion target. Indirect drive has various advantages, including better control over the spectrum of the radiation, smaller system size (the secondary radiation typically has a wavelength 100 times smaller than the driver laser), and more precise control over the compression profile.


References


External links

* http://nuclearweaponarchive.org/Library/Teller.html Radiation