Radiation implosion
   HOME

TheInfoList



OR:

Radiation implosion is the compression of a target by the use of high levels of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
. The major use for this technology is in fusion bombs and
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H). Typical ...
research.


History

Radiation implosion was first developed by
Klaus Fuchs Klaus Emil Julius Fuchs (29 December 1911 – 28 January 1988) was a German theoretical physicist and atomic spy who supplied information from the American, British, and Canadian Manhattan Project to the Soviet Union during and shortly a ...
and
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
in the United States, as part of their work on the original "Classical Super" hydrogen-bomb design. Their work resulted in a secret patent filed in 1946, and later given to the USSR by Fuchs as part of his nuclear espionage. However, their scheme was not the same as used in the final hydrogen-bomb design, and neither the American nor the Soviet programs were able to make use of it directly in developing the hydrogen bomb (its value would become apparent only after the fact). A modified version of the Fuchs-von Neumann scheme was incorporated into the "George" shot of
Operation Greenhouse Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing Teller-Ullam, thermonuclear weapons (''hydrogen bombs''). Conducted at the new Pacific ...
. In 1951,
Stanislaw Ulam Stanislav and variants may refer to: People *Stanislav (given name), a Slavic given name with many spelling variations (Stanislaus, Stanislas, Stanisław, etc.) Places * Stanislav, Kherson Oblast, a coastal village in Ukraine * Stanislaus County, ...
had the idea to use hydrodynamic shock of a fission weapon to compress more fissionable material to extremely high densities in order to make megaton-range, two-stage fission bombs. He then realized that this approach might be useful for starting a thermonuclear reaction. He presented the idea to
Edward Teller Edward Teller (; January 15, 1908 – September 9, 2003) was a Hungarian and American Theoretical physics, theoretical physicist and chemical engineer who is known colloquially as "the father of the hydrogen bomb" and one of the creators of ...
, who realized that radiation compression would be both faster and more efficient than mechanical shock. This combination of ideas, along with a fission "spark plug" embedded inside the fusion fuel, became what is known as the
Teller–Ulam design A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
for the hydrogen bomb.


Fission bomb radiation source

Most of the energy released by a
fission bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear expl ...
is in the form of
x-rays An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
. The spectrum is approximately that of a
black body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is ...
at a temperature of 50,000,000
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s (a little more than three times the temperature of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's core). The amplitude can be modeled as a trapezoidal pulse with a one microsecond rise time, one microsecond plateau, and one microsecond fall time. For a 30 kiloton fission bomb, the total x-ray output would be 100 terajoules (more than 70% of the total yield).


Radiation transport

In a
Teller-Ulam A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design Nuclear weapons design are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to det ...
bomb, the object to be imploded is called the "secondary". It contains fusion material, such as
lithium deuteride Lithium hydride is an inorganic compound with the formula Lithium, LiHydride, H. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a Hydride#Ionic hydrides, salt-like (ionic) hydride, it has a ...
, and its outer layers are a material which is opaque to x-rays, such as
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
or
uranium-238 Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it i ...
. In order to get the x-rays from the surface of the primary, the fission bomb, to the surface of the secondary, a system of "x-ray reflectors" is used. The reflector is typically a cylinder made of a material such as uranium. The primary is located at one end of the cylinder and the secondary is located at the other end. The interior of the cylinder is commonly filled with a foam which is mostly transparent to x-rays, such as
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It i ...
. The term reflector is misleading, since it gives the reader an idea that the device works like a
mirror A mirror, also known as a looking glass, is an object that Reflection (physics), reflects an image. Light that bounces off a mirror forms an image of whatever is in front of it, which is then focused through the lens of the eye or a camera ...
. Some of the x-rays are diffused or scattered, but the majority of the energy transport happens by a two-step process: the x-ray reflector is heated to a high temperature by the flux from the primary, and then it emits x-rays which travel to the secondary. Various classified methods are used to improve the performance of the reflection process{{Citation needed, date=November 2007. Some Chinese documents show that Chinese scientists used a different method to achieve radiation implosion. According to these documents, an X-ray lens, not a reflector, was used to transfer the energy from primary to secondary during the making of the first Chinese H-bomb.For example, se
Zhang paper
/ref>


The implosion process in nuclear weapons

The term "radiation implosion" suggests that the secondary is crushed by
radiation pressure Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
, and calculations show that while this pressure is very large, the pressure of the materials vaporized by the radiation is much larger. The outer layers of the secondary become so hot that they
vaporize Vaporization (or vapo(u)risation) of an element or compound is a phase transition from the liquid phase to vapor. There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenomen ...
and fly off the surface at high speeds. The recoil from this surface layer ejection produces pressures which are an order of magnitude stronger than the simple radiation pressure. The so-called radiation implosion in thermonuclear weapons is therefore thought to be a radiation-powered
ablation Ablation ( – removal) is the removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes, or by other means. Examples of ablative materials are described below, including spacecraft material for as ...
-drive implosion.


Laser radiation implosions

There has been much interest in the use of large
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s to ignite small amounts of fusion material. This process is known as
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H). Typical ...
(ICF). As part of that research, much information on radiation implosion technology has been declassified. When using optical lasers, there is a distinction made between "direct drive" and "indirect drive" systems. In a direct drive system, the laser beam(s) are directed onto the target, and the rise time of the laser system determines what kind of compression profile will be achieved. In an indirect drive system, the target is surrounded by a shell (called a
Hohlraum In radiation thermodynamics, a hohlraum (; a non-specific German word for a "hollow space", "empty room", or "cavity") is a cavity whose walls are in radiative equilibrium with the radiant energy within the cavity. First proposed by Gustav Kir ...
) of some intermediate-Z material, such as
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
. The laser heats this shell to a temperature such that it emits x-rays, and these x-rays are then transported onto the fusion target. Indirect drive has various advantages, including better control over the spectrum of the radiation, smaller system size (the secondary radiation typically has a wavelength 100 times smaller than the driver laser), and more precise control over the compression profile.


References


External links

* http://nuclearweaponarchive.org/Library/Teller.html Radiation Implosion