R136a1
   HOME

TheInfoList



OR:

R136a1 (short for RMC 136a1) is one of the most massive and luminous stars known, at and nearly 4.7 million , and is also one of the hottest, at around . It is a
Wolf–Rayet star Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface ...
at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the
Tarantula Nebula The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaille durin ...
(30 Doradus) in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter and can only be resolved using
speckle interferometry Speckle imaging describes a range of high-resolution astronomical imaging techniques based on the analysis of large numbers of short exposures that freeze the variation of atmospheric turbulence. They can be divided into the shift-and-add ("'' ...
.


Discovery

In 1960, a group of astronomers working at the
Radcliffe Observatory Radcliffe Observatory was the astronomical observatory of the University of Oxford from 1773 until 1934, when the Radcliffe Trustees sold it and built a new observatory in Pretoria, South Africa. It is a Grade I listed building. Today, the ...
in
Pretoria Pretoria () is South Africa's administrative capital, serving as the seat of the executive branch of government, and as the host to all foreign embassies to South Africa. Pretoria straddles the Apies River and extends eastward into the foot ...
made systematic measurements of the
brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminan ...
and spectra of bright stars in the Large Magellanic Cloud. Among the objects cataloged was RMC 136 (Radcliffe observatory Magellanic Cloud catalog number 136), the central "star" of the
Tarantula Nebula The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaille durin ...
, which the observers concluded was probably a multiple star system. Subsequent observations showed that R136 was located in the middle of a giant region of ionized interstellar hydrogen, known as an
H II region An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds ...
, which was a center of intense star formation in the immediate vicinity of the observed stars. In 1979, ESO's 3.6 m telescope was used to resolve R136 into three components; R136a, R136b, and R136c. The exact nature of R136a was unclear and a subject of intense discussion. Estimates that the brightness of the central region would require as many as 100 hot O class stars within half a
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
at the centre of the cluster led to speculation that a star 3,000 times the mass of the Sun was the more likely explanation. The first demonstration that R136a was a star cluster was provided by Weigelt and Beier in 1985. Using the
speckle interferometry Speckle imaging describes a range of high-resolution astronomical imaging techniques based on the analysis of large numbers of short exposures that freeze the variation of atmospheric turbulence. They can be divided into the shift-and-add ("'' ...
technique, R136a was shown to be made up of 8 stars within 1 arcsecond at the centre of the cluster, with R136a1 being the brightest. Final confirmation of the nature of R136a came after the launch of the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
. Its
Wide Field and Planetary Camera The Wide Field/Planetary Camera (WFPC) (pronounced as wiffpick (Operators of the WFPC1 were known as "whiff-pickers")) was a camera installed on the Hubble Space Telescope launched in April 1990 and operated until December 1993. It was one of ...
(WFPC) resolved R136a into at least 12 components and showed that R136 contained over 200 highly luminous stars. The more advanced
WFPC2 The Wide Field and Planetary Camera 2 (WFPC2) is a camera formerly installed on the Hubble Space Telescope. The camera was built by the Jet Propulsion Laboratory and is roughly the size of a baby grand piano. It was installed by servicing missio ...
allowed the study of 46 massive luminous stars within half a parsec of R136a and over 3,000 stars within a 4.7 parsec radius.


Visibility

In the night sky, R136 appears as a 10th magnitude object at the core of the NGC 2070 cluster embedded in the Tarantula Nebula in the Large Magellanic Cloud. It required a 3.6 metre telescope to detect R136a as a component of R136 in 1979, and resolving R136a to detect R136a1 requires a space telescope or sophisticated techniques such as
adaptive optics Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical tele ...
or speckle interferometry. South of about the
20th parallel south The 20th parallel south is a circle of latitude that is 20 degrees south of the Earth's equatorial plane. It crosses the Atlantic Ocean, Africa, the Indian Ocean, Australasia, the Pacific Ocean and South America. Around the world Starting at ...
, the LMC is circumpolar, meaning that it can be seen (at least in part) all night every night of the year, weather and light pollution permitting. In the Northern Hemisphere, it can be visible south of the 20th parallel north. This excludes North America (except southern Mexico), Europe, northern Africa and northern Asia.


Surroundings

The R136a system at the core of R136 is a dense luminous knot of stars containing at least 12 stars, the most prominent being R136a1, R136a2, and R136a3, all of which are extremely luminous and massive WN5h stars. R136a1 is separated from R136a2, the second brightest star in the cluster, by 5,000 AU. R136 is located approximately 157,000 light-years from Earth in the Large Magellanic Cloud, positioned on the south-east corner of the galaxy at the centre of the
Tarantula Nebula The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaille durin ...
, also known as 30 Doradus. R136 itself is just the central condensation of the much larger NGC 2070 open cluster. For such a distant star, R136a1 is relatively unobscured by interstellar dust. The reddening causes the visual brightness to be reduced by about 1.8 magnitudes, but only around 0.22 magnitudes in the near infrared.


Distance

The distance to R136a1 cannot be determined directly, but is assumed to be at the same distance as the Large Magellanic Cloud at around 50 kiloparsecs or 163,000 light years.


Properties


Binary

A possible binary companion to R136a1 has been resolved, although there is a 25% possibility that it is a change alignment.
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
emission was detected from R136 using the
Chandra X-ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources 1 ...
. R136a and R136c were both clearly detected, but R136a could not be resolved. Another study separated the R136a1/2 pair from R136a3. R136a1/2 showed relatively soft x-rays not thought to indicate a colliding winds binary. Rapid Doppler radial velocity variations would be expected from a pair of equal mass stars in a close orbit, but this has not been seen in the R136a1
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
. A high orbital inclination, a more distant binary, or a chance alignment of two distant stars cannot be completely ruled out but is thought to be unlikely. Highly unequal binary components are possible, but would not affect the modelling of R136a1's properties.


Classification

R136a1 is a high-luminosity WN5h star, placing it on the extreme top left corner of the Hertzsprung–Russell diagram. A
Wolf–Rayet star Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface ...
is distinguished by the strong, broad emission lines in its
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
. This includes ionized
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
,
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
and occasionally
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
, but with
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
lines usually weak or absent. A WN5 star is classified on the basis of ionised helium emission being considerably stronger than the neutral helium lines, and having roughly equal emission strength from NIII, NIV, and NV. The "h" in the spectral type indicates significant hydrogen emission in the spectrum, and hydrogen is calculated to make up 40% of the surface abundance by mass. WNh stars as a class are massive luminous stars still burning hydrogen at their cores. The emission spectrum is produced in a powerful dense stellar wind, and the enhanced levels of helium and nitrogen arise from convectional mixing of
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
products to the surface.


Mass

An evolutionary mass of is found from HST visual spectra using a non-LTE line-blanketed CMFGEN model atmosphere. R136a1 closely matches the expected properties for an initially rapidly rotating star with LMC metallicity after shining for about a million years. An earlier analysis using
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
spectroscopy found a current mass of and an initial mass of . A current mass of is found in similar analysis using PoWR (Potsdam Wolf–Rayet) atmospheric models with optical and ultraviolet spectra and a mass–luminosity relation, assuming a single star. R136a1 is undergoing extreme mass loss through a stellar wind reaching a velocity of . This is caused by intense
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
from the very hot photosphere accelerating material away from the surface more strongly than gravity can retain it. Mass loss is largest for high-luminosity stars with low surface gravity and enhanced levels of heavy elements in the photosphere. R136a1 loses () per year, over a billion times more than the Sun loses, and is expected to have shed about since its formation.


Luminosity

It was from 2010 to 2020 that the star was recognised as the most massive and luminous star known. Previous estimates had placed the luminosity as low as . At around , R136a1 is one of the most luminous stars known, radiating more energy in four seconds than the Sun does in a year. If it replaced the Sun in the Solar System, it would outshine the Sun by 164,000 times (MV = −8.2) and would appear from Earth at magnitude −40. Its brightness at a distance of 10 parsecs, the absolute visual magnitude, would be −8.18, three magnitudes brighter than Venus ever appears from Earth. Its brightness at the distance of the nearest star to Earth, Proxima Centauri (just over a parsec), would be about the same as the
full moon The full moon is the lunar phase when the Moon appears fully illuminated from Earth's perspective. This occurs when Earth is located between the Sun and the Moon (when the ecliptic longitudes of the Sun and Moon differ by 180°). This means ...
. R136a1 supplies c. 7% of the ionizing flux of the entire
30 Doradus The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaille durin ...
region, as much as 70 O7 main-sequence stars. Along with R136a2, a3, and c, it produces 43–46% of the Lyman continuum radiation of the whole R136 cluster.
Massive star A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth m ...
s lie close to the Eddington limit, the luminosity at which the radiation pressure acting outwards at the surface of the star equals the force of the star's gravity pulling it inward. Above the Eddington limit, a star generates so much energy that its outer layers are rapidly thrown off. This effectively restricts stars from shining at higher luminosities for long periods. The classical Eddington luminosity limit is not applicable to stars such as R136a1 that are not in hydrostatic equilibrium, and its calculation is extremely complex for real stars. The empirical Humphrey-Davidson limit has been identified as a luminosity limit for observed stars, but recent models have attempted to calculate useful theoretical Eddington limits applicable to massive stars. R136a1 is currently around 70% of its Eddington luminosity.


Temperature

R136a1 has a surface temperature of around , eight times as hot as the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, and with peak radiation in the
extreme ultraviolet Extreme ultraviolet radiation (EUV or XUV) or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124  nm down to 10 nm, and therefore (by the Planck–E ...
. R136a1 has a B–V index of about 0.03, which is a typical colour for an
F-type star An F-type main-sequence star (F V) is a main-sequence, hydrogen-fusing star of spectral type F and luminosity class V. These stars have from 1.0 to 1.4 times the mass of the Sun and surface temperatures between 6,000 and 7,600  K.Tables VII ...
. The "U–V" colour from the HST
WFPC2 The Wide Field and Planetary Camera 2 (WFPC2) is a camera formerly installed on the Hubble Space Telescope. The camera was built by the Jet Propulsion Laboratory and is roughly the size of a baby grand piano. It was installed by servicing missio ...
and filters is −1.28, more indicative of an extremely hot star. This variation of different colour indices relative to a
blackbody A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
is the result of interstellar dust causing reddening and extinction. The reddening (EB–V) can be used to estimate the level of visual extinction (AV). EB–V values of 0.29–0.37 have been measured, with considerable uncertainty due to contamination from close neighbours such as R136a2 0.1" away, leading to AV around 1.80 and a de-reddened B–V (B–V0) of −0.30. The effective temperature of a star can be approximated from the colour, but this is not very accurate and spectral fitting to an atmospheric model is necessary to derive the temperature. Temperatures of 53,000–56,000 K are found for R136a1 using different atmospheric models. Older models had produced temperatures around and hence dramatically lower luminosities. The extreme temperature of the star causes its peak radiation to be around and nearly 99% of the radiation to be emitted outside the visual range (a
bolometric correction In astronomy, the bolometric correction is the correction made to the absolute magnitude of an object in order to convert its visible magnitude to its bolometric magnitude. It is large for stars which radiate most of their energy outside of the vi ...
around −5).


Size

R136a1 is over forty times the radius of the Sun () which corresponds to a volume nearly 80,000 times larger than the Sun. R136a1 does not have a well-defined visible surface like the Earth or the Sun. The hydrostatic main body of the star is surrounded by a dense atmosphere being accelerated outwards into the stellar wind. An arbitrary point within this wind is defined as the surface for measuring the radius, and different authors may use different definitions. For example, a Rosseland optical depth of 2/3 corresponds approximately to a visible surface while a Rosseland depth of 20 or 100 corresponds more closely to a physical photosphere. Stellar temperatures are typically quoted at the same depth so that the radius and temperature correspond to the luminosity. R136a1's dimensions are far smaller than the largest stars:
red supergiant Red supergiants (RSGs) are stars with a supergiant luminosity class ( Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Ant ...
s are , tens of times larger than R136a1. Despite the large mass and modest dimensions, R136a1 has an average density less than 1% of the Sun's. At about 5 kg/ m3, it is around 4 times denser than Earth's atmosphere at
sea level Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardise ...
; alternately, less than an hundredth the density of
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
.


Rotation

The rotation rate of R136a1 cannot be measured directly since the photosphere is hidden by the dense stellar wind and the photospheric absorption lines used to measure rotational doppler broadening are not present in the spectrum. A NV emission line at 2.1 µm is produced relatively deep in the wind and can be used to estimate rotation. In R136a1 it has a
FWHM In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve me ...
of about 15 Å, indicating a slow or non rotating star, although it could be aligned with its pole facing Earth. R136a2 and a3 are rotating rapidly and the closest evolutionary models for R136a1 match a star still rotating with an equatorial speed of c. 200 km/s after c. 1.75 Myr.


Evolution


Current state

R136a1 is currently fusing hydrogen to helium, predominantly by the
CNO cycle The CNO cycle (for carbon–nitrogen–oxygen; sometimes called Bethe–Weizsäcker cycle after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker) is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, ...
due to the high temperatures at the core. Despite the Wolf–Rayet spectral appearance, it is a young star. The emission spectrum is created by a dense stellar wind caused by the extreme luminosity, with the enhanced levels of helium and nitrogen being mixed from the core to the surface by strong convection. It is effectively a main sequence star. Over 90% of the star is convective, with a small non-convective layer at the surface.


Development

Models of star formation by accretion from
molecular cloud A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydroge ...
s predict an upper limit to the mass a star can achieve before its radiation prevents further accretion. The most simplistic accretion models at
population I During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
metallicities predict a limit as low as , but more complex theories allow masses several times higher. An empirical limit of around has become widely accepted. R136a1 clearly exceeds all these limits, leading to development of new single star accretion models potentially removing the upper limit, and the potential for massive star formation by stellar mergers. As a single star formed from accretion, the properties of such a massive star are still uncertain. Synthetic spectra indicate that it would never have a main sequence luminosity class (V), or even a normal O type spectrum. The high luminosity, proximity to the Eddington limit, and strong stellar wind, would be likely to create an If* or WNh spectrum as soon as R136a1 became visible as a star. Helium and nitrogen are rapidly mixed to the surface due to the large convective core and high mass loss, and their presence in the stellar wind creates the characteristic Wolf–Rayet emission spectrum. The ZAMS at very high masses curves back to cooler temperatures, and at LMC metallicities the maximum temperature predicted to be around 56,000 K for stars, so R136a1 would have been slightly cooler than some less massive main sequence stars. During core hydrogen burning, the helium fraction in the core increases and according to the virial theorem the core pressure and temperature will increase. This leads to an increase in luminosity so that R136a1 is somewhat more luminous now than when it first formed. The temperature decreases slightly, but the outer layers of the star have inflated, driving even higher mass loss.


Future

The future development of R136a1 is uncertain, and there are no comparable stars to confirm predictions. The evolution of massive stars depends critically on the amount of mass they can lose, and various models give different results, none of which entirely match observations. It is thought that WNh stars develop into LBVs as hydrogen at the core starts to become depleted. This is an important phase of extreme mass loss which enables a star, at near solar metallicity, to transition to a hydrogen-free Wolf–Rayet star. Stars with sufficiently strong mixing from the core to the surface, due to the very large convective core, high metallicity, or additional rotational mixing, may skip the LBV phase and evolve directly from the hydrogen-rich WNh phase to the hydrogen-poor WN phase. Hydrogen fusion lasts for a little over two million years, and the star's mass at the end is expected to be . A single star with LMC metallicity, even if it starts out rotating very rapidly, will be braked to near zero rotation by the end of hydrogen burning. After core helium fusion starts, the remaining hydrogen in the atmosphere is rapidly lost and R136a1 will quickly contract to a hydrogen-free WNE star and the luminosity will decrease. Wolf–Rayet stars at this point are mostly helium and they lie on the Zero Age Helium Main Sequence (He-ZAMS), analogous to and parallel to the hydrogen-burning main sequence but at hotter temperatures. During helium burning, carbon and oxygen will accumulate in the core and heavy mass loss continues. This eventually leads to the development of a WC spectrum, although at LMC metallicity a star is expected to spend most of the helium burning phase with a WN spectrum. Towards the end of helium burning, core temperature increase and mass loss cause an increase in both luminosity and temperature, with the spectral type becoming WO. Several hundred thousand years will be spent fusing helium, but the final stages of heavier element burning take no more than a few thousand years. R136a1 will eventually shrink to a little over , with just of helium left surrounding the core.


Supernova

Any star which produces a carbon–oxygen (C–O) core more massive than the maximum for a white dwarf (c. ) will inevitably suffer core collapse. This usually happens when an iron core has been produced and fusion can no longer produce the energy required to prevent core collapse, although it can happen in other circumstances. A C–O core between about and will become so hot that the gamma radiation will spontaneously produce electron–positron pairs and the sudden loss of energy in the core will cause it to collapse as a
pair-instability supernova A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiati ...
(PISN), sometimes called a pair-creation supernova (PCSN). A PISN is usually only produced in very low metallicity stars that do not lose sufficient mass to keep their C–O core sizes below . This can also occur at LMC metallicity for very massive stars, but the predicted C–O core size for R136a1 is below so a PISN is unlikely. Iron core collapse may produce a supernova explosion, and sometimes a
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten millise ...
(GRB). The type of any supernova explosion will be a type I since the star has no hydrogen; type Ic since it has almost no helium. Particularly massive iron cores may collapse the entire star into a black hole with no visible explosion, or a sub-luminous supernova as radioactive 56Ni falls back onto the black hole. A type Ic supernova can produce a GRB if the star is rotating and has an appropriate mass. R136a1 is expected to lose almost all its spin long before core collapse so a GRB is unlikely. The remnant from a type Ic core collapse supernova is either a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
or black hole, depending on the mass of the progenitor core. For a star as massive as R136a1, the remnant will very likely be a black hole instead of a neutron star.


See also

*
Hypergiant A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term ''hypergiant'' is defined as luminosity class 0 (zero) in the MKK ...
* List of most luminous stars * List of most massive stars *
VY Canis Majoris VY Canis Majoris (abbreviated to VY CMa) is an extreme oxygen-rich (O-rich) red hypergiant (RHG) or red supergiant (RSG) and pulsating variable star from the Solar System in the slightly southern constellation of Canis Major. It is o ...
— one of the largest stars and red supergiants *
Stephenson 2-18 Stephenson 2-18 (abbreviated to St2-18), also known as Stephenson 2 DFK 1 or RSGC2-18, is an enigmatic red supergiant (RSG) or possible extreme red hypergiant (RHG) star in the constellation of Scutum. It lies near the open cluster Ste ...
— one of the largest stars


References

{{Sky, 05, 38, 42.43, -, 69, 06, 02.2, 165000 Stars in the Large Magellanic Cloud Tarantula Nebula Extragalactic stars Wolf–Rayet stars
Dorado Dorado () is a constellation in the southern sky. It was named in the late 16th century and is now one of the 88 modern constellations. Its name refers to the dolphinfish (''Coryphaena hippurus''), which is known as ''dorado'' in Spanish, altho ...
? Large Magellanic Cloud