Quenching
   HOME

TheInfoList



OR:

In materials science, quenching is the rapid
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or phase change. Temperature lowering achieved by any other means may also be called cooling.ASHRAE Terminology, https://www.ashrae.org/technical-resources/free-resources/as ...
of a workpiece in water, oil, polymer, air, or other fluids to obtain certain
material properties A materials property is an intensive property of a material, i.e., a physical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another c ...
. A type of
heat treating Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are als ...
, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable, and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness. In metallurgy, quenching is most commonly used to harden steel by inducing a martensite transformation, where the steel must be rapidly cooled through its
eutectoid A eutectic system or eutectic mixture ( ) is a homogeneous mixture that has a melting point lower than those of the constituents. The lowest possible melting point over all of the mixing ratios of the constituents is called the ''eutectic tempe ...
point, the temperature at which
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
becomes unstable. In steel alloyed with metals such as
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
and
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
, the eutectoid temperature becomes much lower, but the kinetic barriers to phase transformation remain the same. This allows quenching to start at a lower temperature, making the process much easier.
High-speed steel High-speed steel (HSS or HS) is a subset of tool steels, commonly used as cutting tool material. It is often used in power-saw blades and drill bits. It is superior to the older high-carbon steel tools used extensively through the 1940s in tha ...
also has added
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
, which serves to raise kinetic barriers, which among other effects gives material properties (hardness and abrasion resistance) as though the workpiece had been cooled more rapidly than it really has. Even cooling such alloys slowly in air has most of the desired effects of quenching; high-speed steel weakens much less from heat cycling due to high-speed cutting. Extremely rapid cooling can prevent the formation of all crystal structure, resulting in
amorphous metal An amorphous metal (also known as metallic glass, glassy metal, or shiny metal) is a solid metallic material, usually an alloy, with disordered atomic-scale structure. Most metals are crystalline in their solid state, which means they have a high ...
or "metallic glass".


Quench hardening

Quench hardening is a mechanical process in which steel and cast iron alloys are strengthened and hardened. These metals consist of ferrous metals and alloys. This is done by heating the material to a certain temperature, depending on the material. This produces a harder material by either surface hardening or through-hardening varying on the rate at which the material is cooled. The material is then often tempered to reduce the brittleness that may increase from the quench hardening process. Items that may be quenched include gears, shafts, and wear blocks.


Purpose

Before hardening, cast steels and iron are of a uniform and lamellar (or layered) pearlitic grain structure. This is a mixture of ferrite and
cementite Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, bri ...
formed when steel or cast iron are manufactured and cooled at a slow rate. Pearlite is not an ideal material for many common applications of steel alloys as it is quite soft. By heating pearlite past its eutectoid transition temperature of 727 °C and then rapidly cooling, some of the material's crystal structure can be transformed into a much harder structure known as martensite. Steels with this martensitic structure are often used in applications when the workpiece must be highly resistant to deformation, such as the cutting edge of blades. This is very efficient.


Process

The process of quenching is a progression, beginning with heating the sample. Most materials are heated to between 815 and 900 °C (1,500 to 1,650 °F), with careful attention paid to keeping temperatures throughout the workpiece uniform. Minimizing uneven heating and overheating is key to imparting desired material properties. The second step in the quenching process is soaking. Workpieces can be soaked in air (air furnace), a liquid bath, or a vacuum. The recommended time allocation in salt or lead baths is up to 6 minutes. Soaking times can range a little higher within a vacuum. As in the heating step, it is important that the temperature throughout the sample remains as uniform as possible during soaking. Once the workpiece has finished soaking, it moves on to the cooling step. During this step, the part is submerged into some kind of quenching fluid; different quenching fluids can have a significant effect on the final characteristics of a quenched part. Water is one of the most efficient quenching media where maximum hardness is desired, but there is a small chance that it may cause distortion and tiny cracking. When hardness can be sacrificed, mineral oils are often used. These oil-based fluids often oxidize and form a sludge during quenching, which consequently lowers the efficiency of the process. The cooling rate of oil is much less than water. Intermediate rates between water and oil can be obtained with a purpose formulated quenchant, a substance with an inverse solubility which therefore deposits on the object to slow the rate of cooling. Quenching can also be accomplished using inert gases, such as nitrogen and noble gasses. Nitrogen is commonly used at greater than atmospheric pressure ranging up to 20 bar absolute. Helium is also used because its thermal capacity is greater than nitrogen. Alternatively argon can be used; however, its density requires significantly more energy to move, and its thermal capacity is less than the alternatives. To minimize distortion in the workpiece, long cylindrical workpieces are quenched vertically; flat work pieces are quenched on edge; and thick sections should enter the bath first. To prevent steam bubbles the bath is agitated. Often, after quenching, an iron or steel alloy will be excessively hard and brittle due to an overabundance of martensite. In these cases, another heat treatment technique known as tempering is performed on the quenched material to increase the
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
-based
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
s. Tempering is usually performed after hardening, to reduce some of the excess
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air.


History

There is evidence of the use of quenching processes by blacksmiths stretching back into the middle of the
Iron Age The Iron Age is the final epoch of the three-age division of the prehistory and protohistory of humanity. It was preceded by the Stone Age ( Paleolithic, Mesolithic, Neolithic) and the Bronze Age ( Chalcolithic). The concept has been mostl ...
, but little detailed information exists related to the development of these techniques and the procedures employed by early smiths. Although early ironworkers must have swiftly noticed that processes of cooling could affect the strength and brittleness of iron, and it can be claimed that heat-treatment of steel was known in the Old World from the late second millennium BC, it is hard to identify deliberate uses of quenching archaeologically. Moreover, it appears that, at least in Europe, 'quenching and tempering separately do not seem to have become common until the 15th century'; it is therefore helpful to distinguish between 'full quenching' of steel, where the quenching is so rapid that only martensite forms, and 'slack quenching', where the quenching is slower or interrupted, which also allows pearlite to form and results in a less brittle product. The earliest examples of quenched steel may come from ancient Mesopotamia, with a relatively secure example of a fourth-century BC quench-hardened chisel from Al Mina in Turkey. Book 9, lines 389-94 of Homer's ''
Odyssey The ''Odyssey'' (; grc, Ὀδύσσεια, Odýsseia, ) is one of two major ancient Greek epic poems attributed to Homer. It is one of the oldest extant works of literature still widely read by modern audiences. As with the ''Iliad'', th ...
'' is widely cited as an early, possibly the first, written reference to quenching:
as when a man who works as a blacksmith plunges a screaming great axe blade or adze into cold water, treating it for temper, since this is the way steel is made strong, even so Cyclops' eye sizzled about the beam of the olive.
However, it is not beyond doubt that the passage describes deliberate quench-hardening, rather than simply cooling. Likewise, there is a prospect that the ''
Mahabharata The ''Mahābhārata'' ( ; sa, महाभारतम्, ', ) is one of the two major Sanskrit literature, Sanskrit Indian epic poetry, epics of ancient India in Hinduism, the other being the ''Ramayana, Rāmāyaṇa''. It narrates the s ...
'' refers to the oil-quenching of iron arrowheads, but the evidence is problematic.
Pliny the Elder Gaius Plinius Secundus (AD 23/2479), called Pliny the Elder (), was a Roman author, naturalist and natural philosopher, and naval and army commander of the early Roman Empire, and a friend of the emperor Vespasian. He wrote the encyclopedic ' ...
addressed the topic of quenchants, distinguishing the water of different rivers. Chapters 18-21 of the twelfth-century ''De diversis artis'' by
Theophilus Presbyter Theophilus Presbyter (fl. c. 1070–1125) is the pseudonymous author or compiler of a Latin text containing detailed descriptions of various medieval arts, a text commonly known as the ''Schedula diversarum artium'' ("List of various arts") or ''De ...
mentions quenching, recommending amongst other things that 'tools are also given a harder tempering in the urine of a small, red-headed boy than in ordinary water'. One of the fuller early discussions of quenching is the first Western printed book on metallurgy, '' Von Stahel und Eysen'', published in 1532, which is characteristic of late-medieval technical treatises. Modern scientific study of quenching began to gain real momentum from the seventeenth century, with a major step being the observation-led discussion by
Giambattista della Porta Giambattista della Porta (; 1535 – 4 February 1615), also known as Giovanni Battista Della Porta, was an Italian scholar, polymath and playwright who lived in Naples at the time of the Renaissance, Scientific Revolution and Reformation. Giamb ...
in his 1558 ''
Magia Naturalis ' (in English, ''Natural Magic'') is a work of popular science by Giambattista della Porta first published in Naples in 1558. Its popularity ensured it was republished in five Latin editions within ten years, with translations into Italian (1560 ...
''.J. Vanpaemel. HISTORY OF THE HARDENING OF STEEL: SCIENCE AND TECHNOLOGY. Journal de Physique Colloques, 1982, 43 (C4), pp. C4-847-C4-854. DOI:10.1051/jphyscol:19824139; https://hal.archives-ouvertes.fr/jpa-00222126.


Mechanism of heat removal during quenching

Heat is removed in three particular stages: Stage A: Vapor bubbles formed over metal and starts cooling During this stage, due to the
Leidenfrost effect The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this re ...
, the object is fully surrounded by vapor which insulates it from the rest of the liquid. Stage B: Vapor-transport cooling Once the temperature has dropped enough, the vapor layer will destabilize and the liquid will be able to fully contact the object and heat will be removed much more quickly. Stage C: Liquid cooling This stage occurs when the temperature of the object is below the boiling point of the liquid.


See also

* Quench press * Tempering * Martempering * Austempering *
Hardening_(metallurgy) Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher r ...


References


External links

* {{Iron and steel production Metal heat treatments