Quasar
   HOME

TheInfoList



OR:

A quasar is an extremely luminous
active galactic nucleus An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
(AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass ranging from millions to tens of billions of
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
in the form of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. The
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for ''Th ...
of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
such as the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. Usually, quasars are categorized as a subclass of the more general category of AGN. The
redshifts In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
of quasars are of cosmological origin. The term originated as a
contraction Contraction may refer to: Linguistics * Contraction (grammar), a shortened word * Poetic contraction, omission of letters for poetic reasons * Elision, omission of sounds ** Syncope (phonology), omission of sounds in a word * Synalepha, merged ...
of "quasi-stellar '' tar-like' radio source"—because quasars were first identified during the 1950s as sources of radio-wave emission of unknown physical origin—and when identified in photographic images at visible wavelengths, they resembled faint, star-like points of light. High-resolution images of quasars, particularly from the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, have demonstrated that quasars occur in the centers of galaxies, and that some host galaxies are strongly interacting or merging galaxies. As with other categories of AGN, the observed properties of a quasar depend on many factors, including the mass of the black hole, the rate of gas accretion, the orientation of the accretion disc relative to the observer, the presence or absence of a jet, and the degree of obscuration by gas and
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ...
within the host galaxy. More than a million quasars have been found, with the nearest known being about 600 million
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distance, astronomical distances and is equivalent to about 9.46 Orders of magnitude (numbers)#1012, trillion kilometers (), or 5.88  ...
s away from Earth. The record for the most distant known quasar continues to change. In 2017, the quasar ULAS J1342+0928 was detected at
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
''z'' = 7.54. Light observed from this 800-million-
solar-mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass of ...
quasar was emitted when the universe was only 690 million years old. In 2020, the quasar Pōniuāʻena was detected from a time only 700 million years after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, and with an estimated mass of 1.5 billion times the mass of the Sun. In early 2021, the quasar J0313–1806, with a 1.6-billion-solar-mass black hole, was reported at ''z'' = 7.64, 670 million years after the Big Bang. Quasar discovery surveys have demonstrated that quasar activity was more common in the distant past; the peak epoch was approximately 10 billion years ago. Concentrations of multiple, gravitationally attracted quasars are known as
large quasar group A large quasar group (LQG) is a collection of quasars (a form of supermassive black hole active galactic nuclei) that form what are thought to constitute the largest astronomical structures in the observable universe. LQGs are thought to be precu ...
s and constitute some of the largest known structures in the universe.


Naming

The term "quasar" was first used in an article by astrophysicist Hong-Yee Chiu in May 1964, in ''
Physics Today ''Physics Today'' is the membership magazine of the American Institute of Physics. First published in May 1948, it is issued on a monthly schedule, and is provided to the members of ten physics societies, including the American Physical Society ...
'', to describe certain astronomically puzzling objects:


History of observation and interpretation


Background

Between 1917 and 1922, it became clear from work by Heber Curtis,
Ernst Öpik Ernst Julius Öpik ( – 10 September 1985) was an Estonian astronomer and astrophysicist who spent the second half of his career (1948–1981) at the Armagh Observatory in Northern Ireland. Education Öpik was born in Kunda, Lääne-Viru, Go ...
and others that some objects ("
nebula A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
e") seen by astronomers were in fact distant
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System ...
like the Milky Way. But when
radio astronomy Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation comin ...
began in the 1950s, astronomers detected, among the galaxies, a small number of anomalous objects with properties that defied explanation. The objects emitted large amounts of radiation of many frequencies, but no source could be located optically, or in some cases only a faint and point-like object somewhat like a distant
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
. The
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s of these objects, which identify the
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s of which the object is composed, were also extremely strange and defied explanation. Some of them changed their
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
very rapidly in the optical range and even more rapidly in the X-ray range, suggesting an upper limit on their size, perhaps no larger than the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. This implies an extremely high
power density Power density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply A power supply is an electrical device that supplies electric power to a ...
. Considerable discussion took place over what these objects might be. They were described as ''"quasi-stellar'' eaning: star-like''radio sources"'', or ''"quasi-stellar objects"'' (QSOs), a name which reflected their unknown nature, and this became shortened to "quasar".


Early observations (1960s and earlier)

The first quasars ( 3C 48 and 3C 273) were discovered in the late 1950s, as radio sources in all-sky radio surveys. They were first noted as radio sources with no corresponding visible object. Using small telescopes and the Lovell Telescope as an
interferometer Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
, they were shown to have a very small angular size. By 1960, hundreds of these objects had been recorded and published in the Third Cambridge Catalogue while astronomers scanned the skies for their optical counterparts. In 1963, a definite identification of the radio source 3C 48 with an optical object was published by
Allan Sandage Allan Rex Sandage (June 18, 1926 – November 13, 2010) was an American astronomer. He was Staff Member Emeritus with the Carnegie Observatories in Pasadena, California. He determined the first reasonably accurate values for the Hubble cons ...
and Thomas A. Matthews. Astronomers had detected what appeared to be a faint blue star at the location of the radio source and obtained its spectrum, which contained many unknown broad emission lines. The anomalous spectrum defied interpretation. British-Australian astronomer John Bolton made many early observations of quasars, including a breakthrough in 1962. Another radio source, 3C 273, was predicted to undergo five
occultation An occultation is an event that occurs when one object is hidden from the observer by another object that passes between them. The term is often used in astronomy, but can also refer to any situation in which an object in the foreground blocks ...
s by the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
. Measurements taken by Cyril Hazard and John Bolton during one of the occultations using the
Parkes Radio Telescope Parkes may refer to: * Sir Henry Parkes (1815–1896), Australian politician, one of the earliest and most prominent advocates for Australian federation Named for Henry Parkes * Parkes, New South Wales, a regional town * Parkes Observatory, a rad ...
allowed Maarten Schmidt to find a visible counterpart to the radio source and obtain an optical spectrum using the Hale Telescope on Mount Palomar. This spectrum revealed the same strange emission lines. Schmidt was able to demonstrate that these were likely to be the ordinary
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s of hydrogen redshifted by 15.8%, at the time, a high redshift (with only a handful of much fainter galaxies known with higher redshift). If this was due to the physical motion of the "star", then 3C 273 was receding at an enormous velocity, around , far beyond the speed of any known star and defying any obvious explanation. Nor would an extreme velocity help to explain 3C 273's huge radio emissions. If the redshift was cosmological (now known to be correct), the large distance implied that 3C 273 was far more luminous than any galaxy, but much more compact. Also, 3C 273 was bright enough to detect on archival photographs dating back to the 1900s; it was found to be variable on yearly timescales, implying that a substantial fraction of the light was emitted from a region less than 1 light-year in size, tiny compared to a galaxy. Although it raised many questions, Schmidt's discovery quickly revolutionized quasar observation. The strange spectrum of 3C 48 was quickly identified by Schmidt, Greenstein and Oke as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
redshifted by 37%. Shortly afterwards, two more quasar spectra in 1964 and five more in 1965 were also confirmed as ordinary light that had been redshifted to an extreme degree. While the observations and redshifts themselves were not doubted, their correct interpretation was heavily debated, and Bolton's suggestion that the radiation detected from quasars were ordinary
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s from distant highly redshifted sources with extreme velocity was not widely accepted at the time.


Development of physical understanding (1960s)

An extreme redshift could imply great distance and velocity but could also be due to extreme mass or perhaps some other unknown laws of nature. Extreme velocity and distance would also imply immense power output, which lacked explanation. The small sizes were confirmed by
interferometry Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
and by observing the speed with which the quasar as a whole varied in output, and by their inability to be seen in even the most powerful visible-light telescopes as anything more than faint starlike points of light. But if they were small and far away in space, their power output would have to be immense and difficult to explain. Equally, if they were very small and much closer to this galaxy, it would be easy to explain their apparent power output, but less easy to explain their redshifts and lack of detectable movement against the background of the universe. Schmidt noted that redshift is also associated with the expansion of the universe, as codified in Hubble's law. If the measured redshift was due to expansion, then this would support an interpretation of very distant objects with extraordinarily high
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
and power output, far beyond any object seen to date. This extreme luminosity would also explain the large radio signal. Schmidt concluded that 3C 273 could either be an individual star around 10 km wide within (or near to) this galaxy, or a distant active galactic nucleus. He stated that a distant and extremely powerful object seemed more likely to be correct. Schmidt's explanation for the high redshift was not widely accepted at the time. A major concern was the enormous amount of energy these objects would have to be radiating, if they were distant. In the 1960s no commonly accepted mechanism could account for this. The currently accepted explanation, that it is due to
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
in an accretion disc falling into a supermassive black hole, was only suggested in 1964 by Edwin Salpeter and Yakov Zeldovich, and even then it was rejected by many astronomers, as at this time the existence of
black holes A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
at all was widely seen as theoretical. Various explanations were proposed during the 1960s and 1970s, each with their own problems. It was suggested that quasars were nearby objects, and that their redshift was not due to the expansion of space but rather to light escaping a deep gravitational well. This would require a massive object, which would also explain the high luminosities. However, a star of sufficient mass to produce the measured redshift would be unstable and in excess of the Hayashi limit. Quasars also show forbidden spectral emission lines, previously only seen in hot gaseous nebulae of low density, which would be too diffuse to both generate the observed power and fit within a deep gravitational well. There were also serious concerns regarding the idea of cosmologically distant quasars. One strong argument against them was that they implied energies that were far in excess of known energy conversion processes, including nuclear fusion. There were suggestions that quasars were made of some hitherto unknown stable form of antimatter in similarly unknown types of region of space, and that this might account for their brightness. Others speculated that quasars were a
white hole In general relativity, a white hole is a hypothetical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black ho ...
end of a
wormhole A wormhole ( Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate ...
, or a chain reaction of numerous
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e. Eventually, starting from about the 1970s, many lines of evidence (including the first
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
space observatories, knowledge of
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
s and modern models of
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
) gradually demonstrated that the quasar redshifts are genuine and due to the expansion of space, that quasars are in fact as powerful and as distant as Schmidt and some other astronomers had suggested, and that their energy source is matter from an accretion disc falling onto a supermassive black hole. This included crucial evidence from optical and X-ray viewing of quasar host galaxies, finding of "intervening" absorption lines, which explained various spectral anomalies, observations from gravitational lensing, Gunn's 1971 finding that galaxies containing quasars showed the same redshift as the quasars, and Kristian's 1973 finding that the "fuzzy" surrounding of many quasars was consistent with a less luminous host galaxy. This model also fits well with other observations suggesting that many or even most galaxies have a massive central black hole. It would also explain why quasars are more common in the early universe: as a quasar draws matter from its accretion disc, there comes a point when there is less matter nearby, and energy production falls off or ceases, as the quasar becomes a more ordinary type of galaxy. The accretion-disc energy-production mechanism was finally modeled in the 1970s, and black holes were also directly detected (including evidence showing that supermassive black holes could be found at the centers of this and many other galaxies), which resolved the concern that quasars were too luminous to be a result of very distant objects or that a suitable mechanism could not be confirmed to exist in nature. By 1987 it was "well accepted" that this was the correct explanation for quasars, and the cosmological distance and energy output of quasars was accepted by almost all researchers.


Modern observations (1970s onward)

Later it was found that not all quasars have strong radio emission; in fact only about 10% are "radio-loud". Hence the name "QSO" (quasi-stellar object) is used (in addition to "quasar") to refer to these objects, further categorised into the "radio-loud" and the "radio-quiet" classes. The discovery of the quasar had large implications for the field of astronomy in the 1960s, including drawing physics and astronomy closer together. In 1979 the gravitational lens effect predicted by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's general theory of relativity was confirmed observationally for the first time with images of the double quasar 0957+561. A study published in February 2021 showed that there are more quasars in one direction (towards Hydra) than in the opposite direction, seemingly indicating that the Earth is moving in that direction. But the direction of this dipole is about 28° away from the direction of the Earth's motion relative to the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
radiation. In March 2021, a collaboration of scientists, related to the Event Horizon Telescope, presented, for the first time, a polarized-based image of a
black hole A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
, particularly the black hole at the center of Messier 87, an elliptical galaxy approximately 55 million light-years away in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the earliest constellation ...
Virgo, revealing the forces giving rise to quasars.


Current understanding

It is now known that quasars are distant but extremely luminous objects, so any light that reaches the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
is redshifted due to the metric expansion of space. Quasars inhabit the centers of active galaxies and are among the most luminous, powerful, and energetic objects known in the universe, emitting up to a thousand times the energy output of the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, which contains 200–400 billion stars. This radiation is emitted across the electromagnetic spectrum, almost uniformly, from X-rays to the far infrared with a peak in the ultraviolet optical bands, with some quasars also being strong sources of radio emission and of gamma-rays. With high-resolution imaging from ground-based telescopes and the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
, the "host galaxies" surrounding the quasars have been detected in some cases. These galaxies are normally too dim to be seen against the glare of the quasar, except with special techniques. Most quasars, with the exception of 3C 273, whose average
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
is 12.9, cannot be seen with small telescopes. Quasars are believed—and in many cases confirmed—to be powered by
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
of material into supermassive black holes in the nuclei of distant galaxies, as suggested in 1964 by Edwin Salpeter and Yakov Zeldovich. Light and other radiation cannot escape from within the event horizon of a black hole. The energy produced by a quasar is generated ''outside'' the black hole, by gravitational stresses and immense
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
within the material nearest to the black hole, as it orbits and falls inward. The huge luminosity of quasars results from the accretion discs of central supermassive black holes, which can convert between 6% and 32% of the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of an object into
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
, compared to just 0.7% for the p–p chain nuclear fusion process that dominates the energy production in Sun-like stars. Central masses of 105 to 109
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es have been measured in quasars by using reverberation mapping. Several dozen nearby large galaxies, including the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy, that do not have an active center and do not show any activity similar to a quasar, are confirmed to contain a similar supermassive black hole in their nuclei (galactic center). Thus it is now thought that all large galaxies have a black hole of this kind, but only a small fraction have sufficient matter in the right kind of orbit at their center to become active and power radiation in such a way as to be seen as quasars. This also explains why quasars were more common in the early universe, as this energy production ends when the supermassive black hole consumes all of the gas and dust near it. This means that it is possible that most galaxies, including the Milky Way, have gone through an active stage, appearing as a quasar or some other class of active galaxy that depended on the black-hole mass and the accretion rate, and are now quiescent because they lack a supply of matter to feed into their central black holes to generate radiation. The matter accreting onto the black hole is unlikely to fall directly in, but will have some angular momentum around the black hole, which will cause the matter to collect into an accretion disc. Quasars may also be ignited or re-ignited when normal galaxies merge and the black hole is infused with a fresh source of matter. In fact, it has been suggested that a quasar could form when the Andromeda Galaxy collides with the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy in approximately 3–5 billion years. In the 1980s, unified models were developed in which quasars were classified as a particular kind of active galaxy, and a consensus emerged that in many cases it is simply the viewing angle that distinguishes them from other active galaxies, such as
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from t ...
s and radio galaxies. The highest-redshift quasar known () was ULAS J1342+0928, with a redshift of 7.54, which corresponds to a comoving distance of approximately 29.36 billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distance, astronomical distances and is equivalent to about 9.46 Orders of magnitude (numbers)#1012, trillion kilometers (), or 5.88  ...
s from Earth (these distances are much larger than the distance light could travel in the universe's 13.8-billion-year history because space itself has also been expanding).


Properties

More than quasars have been found (as of August 2020), most from the
Sloan Digital Sky Survey The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 ...
. All observed quasar spectra have redshifts between 0.056 and 7.64 (as of 2021). Applying Hubble's law to these redshifts, it can be shown that they are between 600 million and 29.36 billion light-years away (in terms of comoving distance). Because of the great distances to the farthest quasars and the finite velocity of light, they and their surrounding space appear as they existed in the very early universe. The power of quasars originates from supermassive black holes that are believed to exist at the core of most galaxies. The Doppler shifts of stars near the cores of galaxies indicate that they are revolving around tremendous masses with very steep gravity gradients, suggesting black holes. Although quasars appear faint when viewed from Earth, they are visible from extreme distances, being the most luminous objects in the known universe. The brightest quasar in the sky is 3C 273 in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the earliest constellation ...
of Virgo. It has an average
apparent magnitude Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's ...
of 12.8 (bright enough to be seen through a medium-size amateur
telescope A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to obse ...
), but it has an
absolute magnitude Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it ...
of −26.7. From a distance of about 33 light-years, this object would shine in the sky about as brightly as the Sun. This quasar's
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
is, therefore, about 4 trillion (4) times that of the Sun, or about 100 times that of the total light of giant galaxies like the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. This assumes that the quasar is radiating energy in all directions, but the active galactic nucleus is believed to be radiating preferentially in the direction of its jet. In a universe containing hundreds of billions of galaxies, most of which had active nuclei billions of years ago but only seen today, it is statistically certain that thousands of energy jets should be pointed toward the Earth, some more directly than others. In many cases it is likely that the brighter the quasar, the more directly its jet is aimed at the Earth. Such quasars are called blazars. The hyperluminous quasar APM 08279+5255 was, when discovered in 1998, given an
absolute magnitude Absolute magnitude () is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it ...
of −32.2. High-resolution imaging with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
and the 10 m
Keck Telescope The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have aperture primary mirrors, and when co ...
revealed that this system is gravitationally lensed. A study of the gravitational lensing of this system suggests that the light emitted has been magnified by a factor of ~10. It is still substantially more luminous than nearby quasars such as 3C 273. Quasars were much more common in the early universe than they are today. This discovery by Maarten Schmidt in 1967 was early strong evidence against
steady-state cosmology In cosmology, the steady-state model, or steady state theory is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous ...
and in favor of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
cosmology. Quasars show the locations where supermassive black holes are growing rapidly (by
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
). Detailed simulations reported in 2021 showed that galaxy structures, such as spiral arms, use gravitational forces to 'put the brakes on' gas that would otherwise orbit galaxy centers forever; instead the braking mechanism enabled the gas to fall into the supermassive black holes, releasing enormous radiant energies. These black holes co-evolve with the mass of stars in their host galaxy in a way not fully understood at present. One idea is that jets, radiation and winds created by the quasars shut down the formation of new stars in the host galaxy, a process called "feedback". The jets that produce strong radio emission in some quasars at the centers of
clusters of galaxies The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these o ...
are known to have enough power to prevent the hot gas in those clusters from cooling and falling on to the central galaxy. Quasars' luminosities are variable, with time scales that range from months to hours. This means that quasars generate and emit their energy from a very small region, since each part of the quasar would have to be in contact with other parts on such a time scale as to allow the coordination of the luminosity variations. This would mean that a quasar varying on a time scale of a few weeks cannot be larger than a few light-weeks across. The emission of large amounts of power from a small region requires a power source far more efficient than the nuclear fusion that powers stars. The conversion of gravitational potential energy to radiation by infalling to a black hole converts between 6% and 32% of the mass to energy, compared to 0.7% for the conversion of mass to energy in a star like the Sun. It is the only process known that can produce such high power over a very long term. (Stellar explosions such as
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
s and gamma-ray bursts, and direct
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
antimatter annihilation, can also produce very high power output, but supernovae only last for days, and the universe does not appear to have had large amounts of antimatter at the relevant times.) Since quasars exhibit all the properties common to other
active galaxies An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not pro ...
such as Seyfert galaxies, the emission from quasars can be readily compared to those of smaller active galaxies powered by smaller supermassive black holes. To create a luminosity of 1040 
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
s (the typical brightness of a quasar), a supermassive black hole would have to consume the material equivalent of 10 solar masses per year. The brightest known quasars devour 1000 solar masses of material every year. The largest known is estimated to consume matter equivalent to 10 Earths per second. Quasar luminosities can vary considerably over time, depending on their surroundings. Since it is difficult to fuel quasars for many billions of years, after a quasar finishes accreting the surrounding gas and dust, it becomes an ordinary galaxy. Radiation from quasars is partially "nonthermal" (i.e., not due to
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spe ...
), and approximately 10% are observed to also have jets and lobes like those of radio galaxies that also carry significant (but poorly understood) amounts of energy in the form of particles moving at
relativistic speed Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models consideri ...
s. Extremely high energies might be explained by several mechanisms (see Fermi acceleration and
Centrifugal mechanism of acceleration Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, th ...
). Quasars can be detected over the entire observable
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
, including
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a tr ...
,
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
,
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
,
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
,
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
and even
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s. Most quasars are brightest in their rest-frame ultraviolet
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
of 121.6  nm
Lyman-alpha The Lyman-alpha line, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an ''n'' = 2 orbital to the ...
emission line of hydrogen, but due to the tremendous redshifts of these sources, that peak luminosity has been observed as far to the red as 900.0 nm, in the near infrared. A minority of quasars show strong radio emission, which is generated by jets of matter moving close to the speed of light. When viewed downward, these appear as
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from t ...
s and often have regions that seem to move away from the center faster than the speed of light (
superluminal Faster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (). The special theory of relativity implies that only particles with z ...
expansion). This is an optical illusion due to the properties of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
. Quasar redshifts are measured from the strong
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
s that dominate their visible and ultraviolet emission spectra. These lines are brighter than the continuous spectrum. They exhibit
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Do ...
corresponding to mean speed of several percent of the speed of light. Fast motions strongly indicate a large mass. Emission lines of hydrogen (mainly of the Lyman series and Balmer series), helium, carbon, magnesium, iron and oxygen are the brightest lines. The atoms emitting these lines range from neutral to highly ionized, leaving it highly charged. This wide range of ionization shows that the gas is highly irradiated by the quasar, not merely hot, and not by stars, which cannot produce such a wide range of ionization. Like all (unobscured) active galaxies, quasars can be strong X-ray sources. Radio-loud quasars can also produce X-rays and gamma rays by
inverse Compton scattering Compton scattering, discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. If it results in a decrease in energy (increase in wavelength) of the photon ...
of lower-energy photons by the radio-emitting electrons in the jet. ''Iron quasars'' show strong emission lines resulting from low-ionization
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
(Fe ), such as IRAS 18508-7815.


Spectral lines, reionization, and the early universe

Quasars also provide some clues as to the end of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
's reionization. The oldest known quasars ( ''z'' = 6) display a Gunn–Peterson trough and have absorption regions in front of them indicating that the intergalactic medium at that time was neutral gas. More recent quasars show no absorption region, but rather their spectra contain a spiky area known as the Lyman-alpha forest; this indicates that the intergalactic medium has undergone reionization into plasma, and that neutral gas exists only in small clouds. The intense production of ionizing
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
radiation is also significant, as it would provide a mechanism for reionization to occur as galaxies form. Despite this, current theories suggest that quasars were not the primary source of reionization; the primary causes of reionization were probably the earliest generations of
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, known as Population III stars (possibly 70%), and dwarf galaxies (very early small high-energy galaxies) (possibly 30%). Quasars show evidence of elements heavier than
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
, indicating that galaxies underwent a massive phase of
star formation Star formation is the process by which dense regions within molecular clouds in The "medium" is present further soon.-->interstellar space
, creating population III stars between the time of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
and the first observed quasars. Light from these stars may have been observed in 2005 using
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
's
Spitzer Space Telescope The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, ...
, although this observation remains to be confirmed.


Quasar subtypes

The
taxonomy Taxonomy is the practice and science of categorization or classification. A taxonomy (or taxonomical classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups or types. ...
of quasars includes various subtypes representing subsets of the quasar population having distinct properties. * Radio-loud quasars are quasars with powerful jets that are strong sources of radio-wavelength emission. These make up about 10% of the overall quasar population. * Radio-quiet quasars are those quasars lacking powerful jets, with relatively weaker radio emission than the radio-loud population. The majority of quasars (about 90%) are radio-quiet. * Broad absorption-line (BAL) quasars are quasars whose spectra exhibit broad absorption lines that are blueshifted relative to the quasar's rest frame, resulting from gas flowing outward from the active nucleus in the direction toward the observer. Broad absorption lines are found in about 10% of quasars, and BAL quasars are usually radio-quiet. In the rest-frame ultraviolet spectra of BAL quasars, broad absorption lines can be detected from ionized carbon, magnesium, silicon, nitrogen, and other elements. * Type 2 (or Type II) quasars are quasars in which the accretion disc and broad emission lines are highly obscured by dense gas and
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ...
. They are higher-luminosity counterparts of Type 2 Seyfert galaxies. * Red quasars are quasars with optical colors that are redder than normal quasars, thought to be the result of moderate levels of dust
extinction Extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the Endling, last individual of the species, although the Functional ext ...
within the quasar host galaxy. Infrared surveys have demonstrated that red quasars make up a substantial fraction of the total quasar population. * Optically violent variable (OVV) quasars are radio-loud quasars in which the jet is directed toward the observer. Relativistic beaming of the jet emission results in strong and rapid variability of the quasar brightness. OVV quasars are also considered to be a type of
blazar A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from t ...
. * Weak emission line quasars are quasars having unusually faint emission lines in the ultraviolet/visible spectrum.


Role in celestial reference systems

Because quasars are extremely distant, bright, and small in apparent size, they are useful reference points in establishing a measurement grid on the sky. The
International Celestial Reference System The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "s ...
(ICRS) is based on hundreds of extra-galactic radio sources, mostly quasars, distributed around the entire sky. Because they are so distant, they are apparently stationary to current technology, yet their positions can be measured with the utmost accuracy by
very-long-baseline interferometry Very-long-baseline interferometry (VLBI) is a type of astronomical interferometry used in radio astronomy. In VLBI a signal from an astronomical radio source, such as a quasar, is collected at multiple radio telescopes on Earth or in space. Th ...
(VLBI). The positions of most are known to 0.001
arcsecond A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The n ...
or better, which is orders of magnitude more precise than the best optical measurements.


Multiple quasars

A grouping of two or more quasars on the sky can result from a chance alignment, where the quasars are not physically associated, from actual physical proximity, or from the effects of gravity bending the light of a single quasar into two or more images by gravitational lensing. When two quasars appear to be very close to each other as seen from Earth (separated by a few
arcsecond A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The n ...
s or less), they are commonly referred to as a "double quasar". When the two are also close together in space (i.e. observed to have similar redshifts), they are termed a "quasar pair", or as a "binary quasar" if they are close enough that their host galaxies are likely to be physically interacting. As quasars are overall rare objects in the universe, the probability of three or more separate quasars being found near the same physical location is very low, and determining whether the system is closely separated physically requires significant observational effort. The first true triple quasar was found in 2007 by observations at the W. M. Keck Observatory in
Mauna Kea Mauna Kea ( or ; ; abbreviation for ''Mauna a Wākea''); is a dormant volcano on the island of Hawaii. Its peak is above sea level, making it the highest point in the state of Hawaii and second-highest peak of an island on Earth. The peak ...
,
Hawaii Hawaii ( ; haw, Hawaii or ) is a state in the Western United States, located in the Pacific Ocean about from the U.S. mainland. It is the only U.S. state outside North America, the only state that is an archipelago, and the only stat ...
.
LBQS 1429-008 LBQS 1429-008 (QQ 1429−008, QQ 1432−0106, QQQ J1432−0106) is a physical triple quasar.Sky & TelescopThe First Triple QuasarJanuary 10, 2007 It was the first physical triple discovered. References Quasars Virgo (constellati ...
(or QQQ J1432-0106) was first observed in 1989 and at the time was found to be a double quasar. When
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either ...
s discovered the third member, they confirmed that the sources were separate and not the result of gravitational lensing. This triple quasar has a redshift of ''z'' = 2.076. The components are separated by an estimated 30–50  kiloparsecs (roughly 97,000–160,000 light-years), which is typical for interacting galaxies. In 2013, the second true triplet of quasars, QQQ J1519+0627, was found with a redshift ''z'' = 1.51, the whole system fitting within a physical separation of 25 kpc (about 80,000 light-years). The first true quadruple quasar system was discovered in 2015 at a redshift ''z'' = 2.0412 and has an overall physical scale of about 200 kpc (roughly 650,000 light-years). A multiple-image quasar is a quasar whose light undergoes gravitational lensing, resulting in double, triple or quadruple images of the same quasar. The first such gravitational lens to be discovered was the double-imaged quasar Q0957+561 (or Twin Quasar) in 1979. An example of a triply lensed quasar is PG1115+08. Several quadruple-image quasars are known, including the Einstein Cross and the Cloverleaf Quasar, with the first such discoveries happening in the mid-1980s.


Gallery

File:Double_Quasars_in_Merging_Galaxies.jpg, Illustration of Double Quasars in Merging Galaxies File:Hubble_Resolves_Two_Pairs_of_Quasars.jpg, These two NASA/ESA Hubble Space Telescope images reveal two pairs of quasars that existed 10 billion years ago and reside at the hearts of merging galaxies.


See also

* Galaxy formation and evolution *
Large quasar group A large quasar group (LQG) is a collection of quasars (a form of supermassive black hole active galactic nuclei) that form what are thought to constitute the largest astronomical structures in the observable universe. LQGs are thought to be precu ...
* List of quasars *
List of microquasars This is a list of all known microquasars: 1 *1E 1740,7-2942 4 * 4U1630-47 C *Cygnus X-1 * Cygnus X-3 (V1521) * CI Cam G * GRS 1915+105 * GRO J1655-40 * GX339-4 K * KS1731-260 L *LS I +61 303 *LS 5039 S *Scorpius X-1 *SS 433 V *V4641 Sgr ...
* Microquasar * Quasi-star


References


External links


3C 273: Variable Star Of The Season

SKY-MAP.ORG SDSS image of quasar 3C 273


*
* ttp://cas.sdss.org/dr6/en/proj/advanced/quasars/default.asp SDSS Advanced Student Projects: Quasars
Black Holes: Gravity's Relentless Pull
Award-winning interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute
Audio: Fraser Cain/Pamela L. Gay – Astronomy Cast. Quasars – July 2008
* {{Authority control Active galaxy types Articles containing video clips Radio astronomy Concepts in astronomy