Quantum metamaterial
   HOME

TheInfoList



OR:

Quantum metamaterials extend the science of
metamaterials A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is any material engineered to have a property that is not found in naturally occurring materials. ...
to the quantum level. They can control
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
by applying the rules of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
. In the broad sense, a ''quantum metamaterial'' is a metamaterial in which certain quantum properties of the medium must be taken into account and whose behaviour is thus described by both
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
and the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
. Its behaviour reflects the existence of both EM waves and
matter waves Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wav ...
. The constituents can be at
nanoscopic The nanoscopic scale (or nanoscale) usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1–100 nanometers (nm). A nanometer is a billionth of a meter. The nanoscopic scale is (roughly speaking) a lo ...
or
microscopic The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale be ...
scales, depending on the frequency range (e.g., optical or microwave). Note: the DOI is linked to a full text article. Note: full text article available - click on title. In a more strict approach, a quantum metamaterial should demonstrate coherent quantum dynamics. Such a system is essentially a spatially extended controllable quantum object that allows additional ways of controlling the propagation of electromagnetic waves. Quantum metamaterials can be narrowly defined as optical media that: * Are composed of quantum coherent unit elements with engineered parameters; * Exhibit controllable quantum states of these elements; * Maintain quantum coherence for longer than the traversal time of a relevant electromagnetic signal.


Research

Fundamental research in quantum metamaterials creates opportunities for novel investigations in
quantum phase transition In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases ( phases of matter at zero temperature). Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a phys ...
, new perspectives on
adiabatic quantum computation Adiabatic quantum computation (AQC) is a form of quantum computing which relies on the adiabatic theorem to do calculations and is closely related to quantum annealing. Description First, a (potentially complicated) Hamiltonian is found whose g ...
and a route to other quantum technology applications. Such a system is essentially a spatially-extended controllable quantum object that allows additional ways of controlling electromagnetic wave propagation. In other words, quantum metamaterials incorporate quantum coherent states in order to control and manipulate
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) li ...
. With these materials,
quantum information Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both t ...
processing is combined with the science of metamaterials (periodic artificial electromagnetic materials). The unit cells can be imagined to function as
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
s that maintain
quantum coherence In physics, two wave sources are coherent if their frequency and waveform are identical. Coherence is an ideal property of waves that enables stationary (i.e., temporally or spatially constant) interference. It contains several distinct concepts ...
"long enough for the electromagnetic pulse to travel across". The quantum state is achieved through the material's individual cells. As each cell interacts with the propagating electromagnetic pulse, the whole system retains quantum coherence. Several types of metamaterials are being studied.
Nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
s can use
quantum dots Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
as the unit cells or artificial atoms of the structure, arranged as periodic
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dime ...
. This material demonstrates a negative index of refraction and effective magnetism and is simple to build. The radiated wavelength of interest is much larger than the constituent diameter. Another type uses periodically arranged cold atom cells, accomplished with ultra-cold gasses. A photonic bandgap can be demonstrated with this structure, along with tunability and control as a quantum system. Quantum metamaterial prototypes based on
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
devices with and without
Josephson junctions In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mech ...
are being actively investigated. Recently a superconducting quantum metamaterial prototype based on flux qubits was realized.


See also

*
Negative index metamaterials Negative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, wh ...
*
Introduction to quantum mechanics Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the be ...
* Nanotechnology * History of metamaterials


References


External links

* META 12
Special Sessions
* Conference o
Quantum Metamaterials
* Quantum metamaterial
SPIE
{{emerging technologies, quantum=yes, other=yes Metamaterials Quantum mechanics