Quantum mechanics of time travel
   HOME

TheInfoList



OR:

Until recently, most studies on
time travel Time travel is the concept of movement between certain points in time, analogous to movement between different points in space by an object or a person, typically with the use of a hypothetical device known as a time machine. Time travel is a ...
are based upon classical
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. Coming up with a quantum version of time travel requires physicists to figure out the time evolution equations for
density state In quantum mechanics, a density matrix (or density operator) is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using ...
s in the presence of
closed timelike curve In mathematical physics, a closed timelike curve (CTC) is a world line in a Lorentzian manifold, of a material particle in spacetime, that is "closed", returning to its starting point. This possibility was first discovered by Willem Jacob van St ...
s (CTC). Novikov had conjectured that once quantum mechanics is taken into account, self-consistent solutions always exist for all time machine configurations, and initial conditions. However, it has been noted such solutions are not unique in general, in violation of determinism,
unitarity In quantum physics, unitarity is the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quant ...
and
linearity Linearity is the property of a mathematical relationship ('' function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear ...
. The application of self-consistency to quantum mechanical time machines has taken two main routes. Novikov's rule applied to the density matrix itself gives the Deutsch prescription. Applied instead to the state vector, the same rule gives nonunitary physics with a dual description in terms of post-selection.


Deutsch's prescription

In 1991,
David Deutsch David Elieser Deutsch ( ; born 18 May 1953) is a British physicist at the University of Oxford. He is a Visiting Professor in the Department of Atomic and Laser Physics at the Centre for Quantum Computation (CQC) in the Clarendon Laboratory of ...
came up with a proposal for the time evolution equations, with special note as to how it resolves the
grandfather paradox A temporal paradox, time paradox, or time travel paradox is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time and time travel. The notion of time travel to the future complies with current understanding ...
and nondeterminism. However, his resolution to the grandfather paradox is considered unsatisfactory to some people, because it states the time traveller reenters another parallel universe, and that the actual
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution i ...
is a quantum superposition of states where the time traveller does and does not exist. He made the simplifying assumption that we can split the quantum system into a subsystem A external to the closed timelike curve, and a CTC part. Also, he assumed that we can combine all the time evolution between the exterior and the CTC into a single
unitary operator In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the co ...
''U''. This presupposes the
Schrödinger picture In physics, the Schrödinger picture is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may ...
. We have a
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
for the combined state of both systems. He makes the further assumption there is no correlation between the initial density state of A and the density state of the CTC. This assumption is not time-symmetric, which he tried to justify by appealing to measurement theory and the second law of thermodynamics. He proposed that the density state restricted to the CTC is a fixed-point of :\rho_ = \text_A \left U \left( \rho_A \otimes \rho_ \right) U^\dagger\right/math>. He showed that such fixed points always exist. He justified this choice by noting the
expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
of any CTC observable will match after a loop. However, this could lead to "multivalued" histories if memory is preserved around the loop. In particular, his prescription is incompatible with path integrals unless we allow for multivalued fields. Another point to note is in general, we have more than one fixed point, and this leads to
nondeterminism Nondeterminism or nondeterministic may refer to: Computer science *Nondeterministic programming *Nondeterministic algorithm *Nondeterministic model of computation **Nondeterministic finite automaton **Nondeterministic Turing machine *Indeterminacy ...
in the time evolution. He suggested the solution to use is the one with the maximum entropy. The final external state is given by \text_ \left U \left( \rho_A \otimes \rho_ \right) U^\dagger\right/math>. Pure states can evolve into mixed states. This leads to seemingly paradoxical resolutions to the grandfather paradox. Assume the external subsystem is irrelevant, and only a qubit travels in the CTC. Also assume during the course around the time machine, the value of the qubit is flipped according to the unitary operator :U = \begin0 & 1\\1 & 0\end. The most general fixed-point solution is given by :\rho_ = \begin\frac & a\\a & \frac\end where ''a'' is a real number between -1/2 and 1/2. This is an example of the nonuniqueness of solutions. The solution maximizing the
von Neumann entropy In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ...
is given by a=0. We can think of this as a mixture (not superposition) between the states \left( \left, 0 \right\rangle + \left, 1 \right\rangle \right)/\sqrt and \left( \left, 0 \right\rangle - \left, 1 \right\rangle \right)/\sqrt. This leads to an interesting interpretation that if the qubit starts off with a value of 0, it will end up with a value of 1, and vice versa, but this should not be problematic according to Deutsch because the qubit ends up in a different parallel universe in the
many worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum m ...
. Later researchers have noted that if his prescription turned out to be right, computers in the vicinity of a time machine can solve
PSPACE-complete In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can b ...
problems. However, it was shown in an article by Tolksdorf and Verch that Deutsch's CTC fixed point condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic quantum field theory on spacetimes where CTCs are excluded, casting doubts on whether Deutsch's condition is really characteristic of quantum processes mimicking CTCs in the sense of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. In a later article, the same authors have shown that Deutsch's CTC fixed point condition can also be fulfilled in any system subject to the laws of classical statistical mechanics, even if it is not built up by quantum systems. The authors conclude that hence, Deutsch's condition is not specific to quantum physics, nor does it depend on the quantum nature of a physical system so that it can be fulfilled. In consequence, Tolksdorf and Verch further conclude that Deutsch's condition isn't sufficiently specific to allow statements about time travel scenarios or their hypothetical realization by quantum physics, and that Deutsch's attempt to explain the possibility of his proposed time-travel scenario using the many-world interpretation of quantum mechanics is misleading.


Lloyd's prescription

An alternative proposal was later presented by
Seth Lloyd Seth Lloyd (born August 2, 1960) is a professor of mechanical engineering and physics at the Massachusetts Institute of Technology. His research area is the interplay of information with complex systems, especially quantum systems. He has perform ...
based upon post-selection and path integrals. In particular, the path integral is over single-valued fields, leading to self-consistent histories. He assumed it is ill-defined to speak of the actual density state of the CTC itself, and we should only focus upon the density state outside the CTC. His proposal for the time evolution of the external density state is :\rho_f = \frac, where C = \text_\left U \right/math>. If \text\left C\rho_i C^\dagger\right0, no solution exists due to
destructive interference In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
in the path integral. For instance, the grandfather paradox has no solution, and leads to an inconsistent state. If a solution exists, it is clearly unique.


Entropy and computation

A related description of CTC physics was given in 2001 by Michael Devin, and applied to thermodynamics. The same model with the introduction of a noise term allowing for inexact periodicity, allows the grandfather paradox to be resolved, and clarifies the computational power of a time machine assisted computer. Each time traveling qubit has an associated
negentropy In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book ''What is Life?'' Later, Léon Brillo ...
, given approximately by the logarithm of the noise of the communication channel. Each use of the time machine can be used to extract as much work from a thermal bath. In a brute force search for a randomly generated password, the entropy of the unknown string can be effectively reduced by a similar amount. Because the negentropy and computational power diverge as the noise term goes to zero, complexity class may not be the best way to describe the capabilities of time machines.


See also

*
Novikov self-consistency principle The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov int ...
*
Grandfather paradox A temporal paradox, time paradox, or time travel paradox is a paradox, an apparent contradiction, or logical contradiction associated with the idea of time and time travel. The notion of time travel to the future complies with current understanding ...
* Ontological paradox


References

{{DEFAULTSORT:Quantum Mechanics Of Time Travel Time travel Quantum mechanics Quantum gravity