Problem of time
   HOME

TheInfoList



OR:

In
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, the problem of time is a conceptual conflict between
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, ...
really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction. For macroscopic systems the directionality of time is directly linked to
first principles In philosophy and science, a first principle is a basic proposition or assumption that cannot be deduced from any other proposition or assumption. First principles in philosophy are from First Cause attitudes and taught by Aristotelians, and nua ...
such as the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
.


Time in quantum mechanics

In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, a special status is assigned to time in the sense that it is treated as a classical background parameter, external to the system itself. This special role is seen in the standard formulation of quantum mechanics. It is regarded as part of an a priori given classical background with a well defined value. In fact, the classical treatment of time is deeply intertwined with the
Copenhagen interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as feat ...
of quantum mechanics, and, thus, with the conceptual foundations of quantum theory: all measurements of observables are made at certain instants of time and probabilities are only assigned to such measurements.
Special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
has modified the notion of time. But from a fixed
Lorentz Lorentz is a name derived from the Roman surname, Laurentius, which means "from Laurentum". It is the German form of Laurence. Notable people with the name include: Given name * Lorentz Aspen (born 1978), Norwegian heavy metal pianist and keyboar ...
observer's viewpoint time remains a distinguished, absolute, external, global parameter. The Newtonian notion of
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, ...
essentially carries over to special relativistic systems, hidden in the
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
structure.


Overturning of absolute time in general relativity

Though classically
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
appears to be an absolute background,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
reveals that spacetime is actually dynamical; gravity is a manifestation of spacetime geometry. Matter reacts with spacetime: Also, spacetime can interact with itself (e.g. gravitational waves). The dynamical nature of spacetime has a vast array of consequences. The dynamical nature of spacetime, via the hole argument, implies that the theory is
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
invariant. The constraints are the imprint in the canonical theory of the diffeomorphism invariance of the four-dimensional theory. They also contain the dynamics of the theory, since the Hamiltonian is zero (identically vanishes). The quantum theory has no explicit dynamics; wavefunctions are annihilated by the constraints and Dirac observables commute with the constraints and hence are constants of motion. Kuchar introduces the idea of "perennials" and Rovelli the idea of "partial observables". The expectation is that in physical situations some of the variables of the theory will play the role of a "time" with respect to which other variables would evolve and define dynamics in a relational way. This runs into difficulties and is a version of the "problem of time" in the canonical quantization.


Proposed solutions to the problem of time

The quantum concept of time first emerged from early research on quantum gravity, in particular from the work of
Bryce DeWitt Bryce Seligman DeWitt (January 8, 1923 – September 23, 2004), was an American theoretical physicist noted for his work in gravitation and quantum field theory. Life He was born Carl Bryce Seligman, but he and his three brothers, including th ...
in the 1960s: In other words, time is an entanglement phenomenon, which places all equal clock readings (of correctly prepared clocks – or of any objects usable as clocks) into the same history. This was first understood by physicists Don Page and
William Wootters William "Bill" Kent Wootters () is an American theoretical physicist, and one of the founders of the field of quantum information theory. In a 1982 joint paper with Wojciech H. Zurek, Wootters proved the no cloning theorem, at the same time as D ...
in 1983. They made a proposal to address the problem of time in systems like general relativity called conditional probabilities interpretation. It consists in promoting all variables to quantum operators, one of them as a clock, and asking conditional probability questions with respect to other variables. They arrived at a solution based on the quantum phenomenon of entanglement. Page and Wootters showed how
quantum entanglement Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of ...
can be used to measure time. In 2013, at the Istituto Nazionale di Ricerca Metrologica (INRIM) in Turin, Italy, Ekaterina Moreva, together with Giorgio Brida, Marco Gramegna, Vittorio Giovannetti, Lorenzo Maccone, and Marco Genovese performed the first experimental test of Page and Wootters' ideas. They confirmed that time is an emergent phenomenon for internal observers but absent for external observers of the universe just as the
Wheeler–DeWitt equation The Wheeler–DeWitt equation for theoretical physics and applied mathematics, is a field equation attributed to John Archibald Wheeler and Bryce DeWitt. The equation attempts to mathematically combine the ideas of quantum mechanics and general ...
predicts. Consistent discretizations approach developed by
Jorge Pullin Jorge Pullin (; born 1963 in Argentina) is an American theoretical physicist known for his work on black hole collisions and quantum gravity. He is the Horace Hearne Chair in theoretical Physics at the Louisiana State University. Biography Jorge ...
and Rodolfo Gambini have no constraints. These are lattice approximation techniques for quantum gravity. In the canonical approach if one discretizes the constraints and equations of motion, the resulting discrete equations are inconsistent: they cannot be solved simultaneously. To address this problem one uses a technique based on discretizing the action of the theory and working with the discrete equations of motion. These are automatically guaranteed to be consistent. Most of the hard conceptual questions of quantum gravity are related to the presence of constraints in the theory. Consistent discretized theories are free of these conceptual problems and can be straightforwardly quantized, providing a solution to the problem of time. It is a bit more subtle than this. Although without constraints and having "general evolution", the latter is only in terms of a discrete parameter that isn't physically accessible. The way out is addressed in a way similar to the Page–Wooters approach. The idea is to pick one of the physical variables to be a clock and asks relational questions. These ideas, where the clock is also quantum mechanical, have actually led to a new interpretation of quantum mechanics — the Montevideo interpretation of quantum mechanics. This new interpretation solves the problems of the use of environmental decoherence as a solution to the problem of measurement in quantum mechanics by invoking fundamental limitations, due to the quantum mechanical nature of clocks, in the process of measurement in quantum mechanics. These limitations are very natural in the context of generally covariant theories as quantum gravity where the clock must be taken as one of the degrees of freedom of the system itself. They have also put forward this fundamental decoherence as a way to resolve the
black hole information paradox The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from wh ...
. In certain circumstances, a matter field is used to de-parametrize the theory and introduce a physical Hamiltonian. This generates physical time evolution, not a constraint. Reduced phase space quantization constraints are solved first then quantized. This approach was considered for some time to be impossible as it seems to require first finding the general solution to Einstein's equations. However, with use of ideas involved in Dittrich's approximation scheme (built on ideas of Rovelli) a way to explicitly implement, at least in principle, a reduced phase space quantization was made viable.
Avshalom Elitzur Avshalom Cyrus Elitzur ( he, אבשלום כורש אליצור; born 30 May 1957) is an Israeli physicist and philosopher. Biography Avshalom Elitzur was born in Kerman, Iran, to a Jewish family. When he was two years old, his family immigrat ...
and Shahar Dolev argue that quantum mechanical experiments such as the Quantum Liar provide evidence of inconsistent histories, and that spacetime itself may therefore be subject to change affecting entire histories. Elitzur and Dolev also believe that an objective passage of time and relativity can be reconciled, and that it would resolve many of the issues with the block universe and the conflict between relativity and quantum mechanics. One solution to the problem of time proposed by
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
is that there exists a "thick present" of events, in which two events in the present can be causally related to each other, but in contrast to the block universe view of time in which all time exists eternally. Marina Cortês and Lee Smolin argue that certain classes of discrete dynamical systems demonstrate time asymmetry and irreversibility, which is consistent with an objective passage of time.


Weyl time in scale-invariant quantum gravity

Motivated by the Immirzi ambiguity in loop quantum gravity and the near conformal invariance of the standard model of elementary particles, Charles Wang and co-workers have argued that the problem of time may be related to an underlying
scale invariance In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality. The technical term ...
of gravity-matter systems. Scale invariance has also been proposed to resolve the hierarchy problem of fundamental couplings. As a global continuous symmetry, scale invariance generates a conversed Weyl current according to Noether’s theorem. In scale-invariant cosmological models, this Weyl current naturally gives rise to a harmonic time. In the context of loop quantum gravity, Charles Wang et al suggest that scale invariance may lead to the existence of a quantized time.


The thermal time hypothesis

Generally covariant In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the ''form'' of physical laws under arbitrary differentiable coordinate transformations. The essential idea is ...
theories do not have a notion of a distinguished physical time with respect to which everything evolves. However, it is not needed for the full formulation and interpretation of the theory. The dynamical laws are determined by correlations which are sufficient to make predictions. But then a mechanism is needed which explains how the familiar notion of time eventually emerges from the timeless structure to become such an important ingredient of the macroscopic world we live in as well as of our conscious experience. The ''thermal time hypothesis'' has been put forward as a possible solution to this problem by Carlo Rovelli and
Alain Connes Alain Connes (; born 1 April 1947) is a French mathematician, and a theoretical physicist, known for his contributions to the study of operator algebras and noncommutative geometry. He is a professor at the , , Ohio State University and Vand ...
, both in classical and quantum theory. It postulates that physical time flow is not an a priori given fundamental property of the theory, but is a macroscopic feature of thermodynamical origin.


References

{{reflist


Further reading

* '' The Order of Time'' by Carlo Rovelli * ''
Time Reborn ''Time Reborn: From the Crisis in Physics to the Future of the Universe'' is a 2013 book by the American theoretical physicist Lee Smolin. Smolin argues for what he calls a revolutionary view that time is real, in contrast to existing scientific ...
'' by
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
* '' The Singular Universe and the Reality of Time'' by
Lee Smolin Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
and
Roberto Mangabeira Unger Roberto Mangabeira Unger (; born 24 March 1947) is a Brazilian philosopher and politician. His work is in the tradition of classical social theory and pragmatism, and is developed across many fields including legal theory, philosophy and religion ...
Philosophy of physics Philosophical problems Quantum gravity Theoretical physics Philosophy of time