Precision rectifier
   HOME

TheInfoList



OR:

The precision rectifier is a configuration obtained with an
operational amplifier An operational amplifier (often op amp or opamp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential (relative to c ...
in order to have a circuit behave like an ideal
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
and
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation (converting DC to AC) is performed by an inve ...
.Paul Horowitz and Winfield Hill, ''
The Art of Electronics ''The Art of Electronics'', by Paul Horowitz and Winfield Hill, is a popular reference textbook dealing with analog and digital electronics. The first edition was published in 1980, and the 1989 second edition has been regularly reprinted. The ...
''. 2nd ed. Cambridge University Press, Cambridge, 1989 .
It is very useful for high-precision signal processing. With the help of a precision rectifier the high-precision signal processing can be done very easily. The op-amp-based precision rectifier should not be confused with the power MOSFET-based
active rectification Active rectification, or synchronous rectification, is a technique for improving the efficiency of rectification by replacing diodes with actively controlled switches, usually power MOSFETs or power bipolar junction transistors (BJT). Whereas norm ...
ideal diode.


Basic circuit

The basic circuit implementing such a feature is shown on the right, where R_\text can be any load. When the input
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
is negative, there is a negative voltage on the diode, so it works like an open circuit, no current flows through the load, and the output voltage is zero. When the input is positive, it is amplified by the operational amplifier, which switches the diode on. Current flows through the load and, because of the
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
, the output voltage is equal to the input voltage. The actual threshold of the super diode is very close to zero, but is not zero. It equals the actual threshold of the diode, divided by the gain of the operational amplifier. This basic configuration has a problem, so it is not commonly used. When the input becomes (even slightly) negative, the operational amplifier runs open-loop, as there is no feedback signal through the diode. For a typical operational amplifier with high open-loop gain, the output saturates. If the input then becomes positive again, the op-amp has to get out of the saturated state before positive amplification can take place again. This change generates some ringing and takes some time, greatly reducing the
frequency response In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of s ...
of the circuit.


Improved circuit

An alternative version is given on the right. In this case, when the input is greater than zero, D1 is off, and D2 is on, so the output is zero because the other end of R_2 is connected to the virtual ground and there is no current through R_2. When the input is less than zero, D1 is on and D2 is off, so the output is like the input with an amplification of -R_2 / R_1. Its input–output relationship is the following: This circuit has the benefit that the op-amp never goes into saturation, but its output must change by two diode voltage drops (about 1.2 V) each time the input signal crosses zero. Hence, the slew rate of the operational amplifier and its frequency response (
gain–bandwidth product The gain–bandwidth product (designated as GBWP, GBW, GBP, or GB) for an amplifier is the product of the amplifier's bandwidth and the gain at which the bandwidth is measured. For devices such as operational amplifiers that are designed to have ...
) will limit high-frequency performance, especially for low signal levels, although an error of less than 1% at 100 kHz is possible. Similar circuitry can be used to create a precision full-wave rectifier circuit.


Peak detector

With a little modification, the basic precision rectifier can be used for detecting signal level peaks. In the following circuit, a
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
retains the peak voltage level of the signal, and a switch is used for resetting the detected level. When the input Vin exceeds Vc (voltage across capacitor), the diode is forward-biased and the circuit becomes a voltage follower. Consequently, the output voltage Vo follows Vin as long as Vin exceeds Vc. When Vin drops below Vc, the diode becomes reverse-biased and the capacitor holds the charge until the input voltage again attains a value greater than Vc.


References


External links


Precision half-wave rectifier



Single op-amp full-wave rectifier circuits


* {{US patent, 4333141, Patent from 1982 (expired) detailing a simple very accurate design Analog circuits Rectifiers