Positive real axis
   HOME

TheInfoList



OR:

In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used for either of these, the notation \R_ or \R^ for \left\ and \R_^ or \R^_ for \left\ has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians. In a complex plane, \R_ is identified with the positive real axis, and is usually drawn as a horizontal ray. This ray is used as reference in the polar form of a complex number. The real positive axis corresponds to
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s z = , z, \mathrm^, with argument \varphi = 0.


Properties

The set \R_ is closed under addition, multiplication, and division. It inherits a
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
from the real line and, thus, has the structure of a multiplicative
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
or of an additive topological semigroup. For a given positive real number x, the
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
\left\ of its integral powers has three different fates: When x \in (0, 1), the limit is zero; when x = 1, the sequence is constant; and when x > 1, the sequence is unbounded. \R_ = (0,1) \cup \ \cup (1,\infty) and the
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
function exchanges the intervals. The functions floor, \operatorname : excess, \operatorname : [ 1 , \infty ) \to (0,1),\, x \mapsto x - \lfloor x \rfloor, have been used to describe an element x \in \R_ as a continued fraction \left[ n_0; n_1, n_2, \ldots\right], which is a sequence of integers obtained from the floor function after the excess has been reciprocated. For rational x, the sequence terminates with an exact fractional expression of x, and for
quadratic irrational In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducibl ...
x, the sequence becomes a
periodic continued fraction In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form : x = a_0 + \cfrac where the initial block of ''k'' + 1 partial denominators is followed by a block 'a'k''+1, ''a'k''+2,.. ...
. The ordered set \left(\R_, >\right) forms a
total order In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflex ...
but is a
well-ordered set In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-ord ...
. The
doubly infinite In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called t ...
geometric progression In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the ''common ratio''. For ex ...
10^n, where n is an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
, lies entirely in \left(\R_, >\right) and serves to section it for access. \R_ forms a ratio scale, the highest level of measurement. Elements may be written in
scientific notation Scientific notation is a way of expressing numbers that are too large or too small (usually would result in a long string of digits) to be conveniently written in decimal form. It may be referred to as scientific form or standard index form, o ...
as a \times 10^n, where 1 \leq a < 10 and b is the integer in the doubly infinite progression, and is called the
decade A decade () is a period of ten years. Decades may describe any ten-year period, such as those of a person's life, or refer to specific groupings of calendar years. Usage Any period of ten years is a "decade". For example, the statement that "du ...
. In the study of physical magnitudes, the order of decades provides positive and negative ordinals referring to an ordinal scale implicit in the ratio scale. In the study of
classical group In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or s ...
s, for every n \in \N, the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
gives a map from n \times n matrices over the reals to the real numbers: \mathrm(n, \R) \to \R. Restricting to invertible matrices gives a map from the
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
to non-zero real numbers: \mathrm(n, \R) \to \R^\times. Restricting to matrices with a positive determinant gives the map \operatorname^+(n, \R) \to \R_; interpreting the image as a quotient group by the normal subgroup \operatorname(n, \R) \triangleleft \operatorname^+(n, \R), called the
special linear group In mathematics, the special linear group of degree ''n'' over a field ''F'' is the set of matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the ge ...
, expresses the positive reals as a Lie group.


Ratio scale

Among the levels of measurement the ratio scale provides the finest detail. The
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
function takes a value of one when
numerator A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
and
denominator A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
are equal. Other ratios are compared to one by logarithms, often common logarithm using base 10. The ratio scale then segments by
orders of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic dis ...
used in science and technology, expressed in various
units of measurement A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multi ...
. An early expression of ratio scale was articulated geometrically by Eudoxus: "it was ... in geometrical language that the general theory of proportion of Eudoxus was developed, which is equivalent to a theory of positive real numbers." E. J. Dijksterhuis (1961
Mechanization of the World-Picture
page 51, via
Internet Archive The Internet Archive is an American digital library with the stated mission of "universal access to all knowledge". It provides free public access to collections of digitized materials, including websites, software applications/games, music, ...


Logarithmic measure

If ,b\subseteq \R_ is an interval, then \mu( ,b = \log(b / a) = \log b - \log a determines a measure on certain subsets of \R_, corresponding to the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: i ...
of the usual Lebesgue measure on the real numbers under the logarithm: it is the length on the logarithmic scale. In fact, it is an
invariant measure In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, ...
with respect to multiplication ,b\to z, bz/math> by a z \in \R_, just as the Lebesgue measure is invariant under addition. In the context of topological groups, this measure is an example of a Haar measure. The utility of this measure is shown in its use for describing stellar magnitudes and noise levels in decibels, among other applications of the logarithmic scale. For purposes of international standards
ISO 80000-3 ISO 80000 or IEC 80000 is an international standard introducing the International System of Quantities (ISQ). It was developed and promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotech ...
, the dimensionless quantities are referred to as levels.


Applications

The non-negative reals serve as the image for
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
s,
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envi ...
s, and measures in mathematics. Including 0, the set \R_ has a
semiring In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. The term rig is also used occasionally—this originated as a joke, suggesting that rigs ar ...
structure (0 being the
additive identity In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element ''x'' in the set, yields ''x''. One of the most familiar additive identities is the number 0 from elemen ...
), known as the
probability semiring In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. The term rig is also used occasionally—this originated as a joke, suggesting that rigs ...
; taking logarithms (with a choice of base giving a
logarithmic unit A logarithmic scale (or log scale) is a way of displaying numerical data over a very wide range of values in a compact way—typically the largest numbers in the data are hundreds or even thousands of times larger than the smallest numbers. Such a ...
) gives an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
with the
log semiring In mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are d ...
(with 0 corresponding to - \infty), and its units (the finite numbers, excluding - \infty) correspond to the positive real numbers.


Square

Let Q = \R_ \times \R_, the first quadrant of the Cartesian plane. The quadrant itself is divided into four parts by the line L = \ and the standard hyperbola H = \. The L \cup H forms a trident while L \cap H = (1, 1) is the central point. It is the identity element of two one-parameter groups that intersect there: \ \text L \quad \text \quad \ \text H. Since \R_ is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, Q is a
direct product of groups In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one ...
. The one-parameter subgroups ''L'' and ''H'' in ''Q'' profile the activity in the product, and L \times H is a resolution of the types of group action. The realms of business and science abound in ratios, and any change in ratios draws attention. The study refers to
hyperbolic coordinates In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane :\ = Q. Hyperbolic coordinates take values in the hyperbolic plane defined as: :HP = \. These coordinates in ''HP'' are useful for st ...
in ''Q''. Motion against the ''L'' axis indicates a change in the geometric mean \sqrt, while a change along ''H'' indicates a new
hyperbolic angle In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
.


See also

* *


References


Bibliography

* {{Measure theory Topological groups Measure theory