Polyhedron
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
, straight edges and sharp corners or vertices. A
convex polyhedron A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
, a more general concept in any number of dimensions.


Definition

Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedra (such as solids whose boundaries are not manifolds). As
Branko Grünbaum Branko Grünbaum ( he, ברנקו גרונבאום; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descentvertices (corner points), edges (line segments connecting certain pairs of vertices),
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
(two-dimensional polygons), and that it sometimes can be said to have a particular three-dimensional interior
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
. One can distinguish among these different definitions according to whether they describe the polyhedron as a solid, whether they describe it as a surface, or whether they describe it more abstractly based on its incidence geometry. * A common and somewhat naive definition of a polyhedron is that it is a solid whose boundary can be covered by finitely many planes or that it is a solid formed as the union of finitely many convex polyhedra. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. The faces of such a polyhedron can be defined as the connected components of the parts of the boundary within each of the planes that cover it, and the edges and vertices as the line segments and points where the faces meet. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, whose faces may not form
simple polygon In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pairwise to form a single closed path. If ...
s, and some of whose edges may belong to more than two faces. * Definitions based on the idea of a bounding surface rather than a solid are also common.Cromwell (1997), pp. 206–209. For instance, defines a polyhedron as a union of
convex polygon In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a ...
s (its faces), arranged in space so that the intersection of any two polygons is a shared vertex or edge or the empty set and so that their union is a manifold. If a planar part of such a surface is not itself a convex polygon, O'Rourke requires it to be subdivided into smaller convex polygons, with flat
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
s between them. Somewhat more generally, Grünbaum defines an ''acoptic polyhedron'' to be a collection of simple polygons that form an embedded manifold, with each vertex incident to at least three edges and each two faces intersecting only in shared vertices and edges of each.. Cromwell's ''
Polyhedra In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
'' gives a similar definition but without the restriction of at least three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra. Similar notions form the basis of topological definitions of polyhedra, as subdivisions of a topological manifold into topological disks (the faces) whose pairwise intersections are required to be points (vertices), topological arcs (edges), or the empty set. However, there exist topological polyhedra (even with all faces triangles) that cannot be realized as acoptic polyhedra. * One modern approach is based on the theory of abstract polyhedra. These can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element (in this partial order) when the vertex or edge is part of the edge or face. Additionally, one may include a special bottom element of this partial order (representing the empty set) and a top element representing the whole polyhedron. If the sections of the partial order between elements three levels apart (that is, between each face and the bottom element, and between the top element and each vertex) have the same structure as the abstract representation of a polygon, then these partially ordered sets carry exactly the same information as a topological polyhedron. However, these requirements are often relaxed, to instead require only that sections between elements two levels apart have the same structure as the abstract representation of a line segment.. (This means that each edge contains two vertices and belongs to two faces, and that each vertex on a face belongs to two edges of that face.) Geometric polyhedra, defined in other ways, can be described abstractly in this way, but it is also possible to use abstract polyhedra as the basis of a definition of geometric polyhedra. A ''realization'' of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron. Realizations that omit the requirement of face planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this works perfectly well for star polyhedra. However, without additional restrictions, this definition allows
degenerate Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * Degenerate (album), ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party i ...
or unfaithful polyhedra (for instance, by mapping all vertices to a single point) and the question of how to constrain realizations to avoid these degeneracies has not been settled. In all of these definitions, a polyhedron is typically understood as a three-dimensional example of the more general
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
in any number of dimensions. For example, a polygon has a two-dimensional body and no faces, while a
4-polytope In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), an ...
has a four-dimensional body and an additional set of three-dimensional "cells". However, some of the literature on higher-dimensional geometry uses the term "polyhedron" to mean something else: not a three-dimensional polytope, but a shape that is different from a polytope in some way. For instance, some sources define a convex polyhedron to be the intersection of finitely many half-spaces, and a polytope to be a bounded polyhedron... The remainder of this article considers only three-dimensional polyhedra.


Characteristics


Number of faces

Polyhedra may be classified and are often named according to the number of faces. The naming system is based on Classical Greek, and combines a prefix counting the faces with the suffix "hedron", meaning "base" or "seat" and referring to the faces. For example a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
is a polyhedron with four faces, a pentahedron is a polyhedron with five faces, a
hexahedron A hexahedron (plural: hexahedra or hexahedrons) or sexahedron (plural: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. Ther ...
is a polyhedron with six faces, etc. For a complete list of the Greek numeral prefixes see , in the column for Greek cardinal numbers. The names of tetrahedra, hexahedra, octahedra (8-sided polyhedra), dodecahedra (12-sided polyhedra), and icosahedra (20-sided polyhedra) are sometimes used without additional qualification to refer to the Platonic solids, and sometimes used to refer more generally to polyhedra with the given number of sides without any assumption of symmetry.


Topological classification

Some polyhedra have two distinct sides to their surface. For example, the inside and outside of a
convex polyhedron A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
paper model can each be given a different colour (although the inside colour will be hidden from view). These polyhedra are
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space i ...
. The same is true for non-convex polyhedra without self-crossings. Some non-convex self-crossing polyhedra can be coloured in the same way but have regions turned "inside out" so that both colours appear on the outside in different places; these are still considered to be orientable. However, for some other self-crossing polyhedra with simple-polygon faces, such as the tetrahemihexahedron, it is not possible to colour the two sides of each face with two different colours so that adjacent faces have consistent colours. In this case the polyhedron is said to be non-orientable. For polyhedra with self-crossing faces, it may not be clear what it means for adjacent faces to be consistently coloured, but for these polyhedra it is still possible to determine whether it is orientable or non-orientable by considering a topological
cell complex A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This clas ...
with the same incidences between its vertices, edges, and faces. A more subtle distinction between polyhedron surfaces is given by their Euler characteristic, which combines the numbers of vertices V, edges E, and faces F of a polyhedron into a single number \chi defined by the formula :\chi=V-E+F.\ The same formula is also used for the Euler characteristic of other kinds of topological surfaces. It is an invariant of the surface, meaning that when a single surface is subdivided into vertices, edges, and faces in more than one way, the Euler characteristic will be the same for these subdivisions. For a convex polyhedron, or more generally any simply connected polyhedron with surface a topological sphere, it always equals 2. For more complicated shapes, the Euler characteristic relates to the number of
toroid In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
al holes, handles or cross-caps in the surface and will be less than 2. All polyhedra with odd-numbered Euler characteristic are non-orientable. A given figure with even Euler characteristic may or may not be orientable. For example, the one-holed
toroid In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
and the Klein bottle both have \chi = 0, with the first being orientable and the other not. For many (but not all) ways of defining polyhedra, the surface of the polyhedron is required to be a manifold. This means that every edge is part of the boundary of exactly two faces (disallowing shapes like the union of two cubes that meet only along a shared edge) and that every vertex is incident to a single alternating cycle of edges and faces (disallowing shapes like the union of two cubes sharing only a single vertex). For polyhedra defined in these ways, the classification of manifolds implies that the topological type of the surface is completely determined by the combination of its Euler characteristic and orientability. For example, every polyhedron whose surface is an orientable manifold and whose Euler characteristic is 2 must be a topological sphere. A
toroidal polyhedron In geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a -holed torus), having a topological genus () of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Variations in definition Toroidal polyh ...
is a polyhedron whose Euler characteristic is less than or equal to 0, or equivalently whose
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nom ...
is 1 or greater. Topologically, the surfaces of such polyhedra are torus surfaces having one or more holes through the middle.


Duality

For every convex polyhedron, there exists a dual polyhedron having * faces in place of the original's vertices and vice versa, and * the same number of edges. The dual of a convex polyhedron can be obtained by the process of
polar reciprocation In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into it ...
. Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again. Some polyhedra are self-dual, meaning that the dual of the polyhedron is congruent to the original polyhedron. Abstract polyhedra also have duals, obtained by reversing the partial order defining the polyhedron to obtain its dual or opposite order. These have the same Euler characteristic and orientability as the initial polyhedron. However, this form of duality does not describe the shape of a dual polyhedron, but only its combinatorial structure. For some definitions of non-convex geometric polyhedra, there exist polyhedra whose abstract duals cannot be realized as geometric polyhedra under the same definition.


Vertex figures

For every vertex one can define a
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
, which describes the local structure of the polyhedron around the vertex. Precise definitions vary, but a vertex figure can be thought of as the polygon exposed where a slice through the polyhedron cuts off a corner.


Surface area and distances

The surface area of a polyhedron is the sum of areas of its faces, for definitions of polyhedra for which the area of a face is well-defined. The geodesic distance between any two points on the surface of a polyhedron measures the length of the shortest curve that connects the two points, remaining within the surface. By
Alexandrov's uniqueness theorem The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each oth ...
, every convex polyhedron is uniquely determined by the metric space of geodesic distances on its surface. However, non-convex polyhedra can have the same surface distances as each other, or the same as certain convex polyhedra.


Volume

Polyhedral solids have an associated quantity called
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
that measures how much space they occupy. Simple families of solids may have simple formulas for their volumes; for example, the volumes of pyramids, prisms, and parallelepipeds can easily be expressed in terms of their edge lengths or other coordinates. (See Volume § Volume formulas for a list that includes many of these formulas.) Volumes of more complicated polyhedra may not have simple formulas. Volumes of such polyhedra may be computed by subdividing the polyhedron into smaller pieces (for example, by triangulation). For example, the volume of a regular polyhedron can be computed by dividing it into congruent pyramids, with each pyramid having a face of the polyhedron as its base and the centre of the polyhedron as its apex. In general, it can be derived from the divergence theorem that the volume of a polyhedral solid is given by \frac \left, \sum_F (Q_F \cdot N_F) \operatorname(F) \, where the sum is over faces of the polyhedron, is an arbitrary point on face , is the unit vector perpendicular to pointing outside the solid, and the multiplication dot is the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alge ...
. In higher dimensions, volume computation may be challenging, in part because of the difficulty of listing the faces of a convex polyhedron specified only by its vertices, and there exist specialized
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s to determine the volume in these cases.


Dehn invariant

In two dimensions, the Bolyai–Gerwien theorem asserts that any polygon may be transformed into any other polygon of the same area by cutting it up into finitely many polygonal pieces and rearranging them. The analogous question for polyhedra was the subject of
Hilbert's third problem The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely m ...
.
Max Dehn Max Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Born to a Jewish family in Germany, Dehn's early life and career took place in Germany. ...
solved this problem by showing that, unlike in the 2-D case, there exist polyhedra of the same volume that cannot be cut into smaller polyhedra and reassembled into each other. To prove this Dehn discovered another value associated with a polyhedron, the
Dehn invariant In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who us ...
, such that two polyhedra can only be dissected into each other when they have the same volume and the same Dehn invariant. It was later proven by Sydler that this is the only obstacle to dissection: every two Euclidean polyhedra with the same volumes and Dehn invariants can be cut up and reassembled into each other. The Dehn invariant is not a number, but a
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
in an infinite-dimensional vector space, determined from the lengths and
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
s of a polyhedron's edges. Another of Hilbert's problems, Hilbert's 18th problem, concerns (among other things) polyhedra that tile space. Every such polyhedron must have Dehn invariant zero. The Dehn invariant has also been connected to flexible polyhedra by the strong bellows theorem, which states that the Dehn invariant of any flexible polyhedron remains invariant as it flexes.


Convex polyhedra

A three-dimensional solid is a convex set if it contains every line segment connecting two of its points. A
convex polyhedron A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
is a polyhedron that, as a solid, forms a convex set. A convex polyhedron can also be defined as a bounded intersection of finitely many half-spaces, or as the convex hull of finitely many points. Important classes of convex polyhedra include the highly symmetrical Platonic solids, the
Archimedean solids In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are compose ...
and their duals the Catalan solids, and the regular-faced Johnson solids.


Symmetries

Many of the most studied polyhedra are highly
symmetrical Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
, that is, their appearance is unchanged by some reflection or rotation of space. Each such symmetry may change the location of a given vertex, face, or edge, but the set of all vertices (likewise faces, edges) is unchanged. The collection of symmetries of a polyhedron is called its symmetry group. All the elements that can be superimposed on each other by symmetries are said to form a symmetry orbit. For example, all the faces of a cube lie in one orbit, while all the edges lie in another. If all the elements of a given dimension, say all the faces, lie in the same orbit, the figure is said to be transitive on that orbit. For example, a cube is face-transitive, while a truncated cube has two symmetry orbits of faces. The same abstract structure may support more or less symmetric geometric polyhedra. But where a polyhedral name is given, such as
icosidodecahedron In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 i ...
, the most symmetrical geometry is almost always implied, unless otherwise stated. There are several types of highly symmetric polyhedron, classified by which kind of element – faces, edges, or vertices – belong to a single symmetry orbit: * Regular: vertex-transitive, edge-transitive and face-transitive. (This implies that every face is the same
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
; it also implies that every vertex is regular.) * Quasi-regular: vertex-transitive and edge-transitive (and hence has regular faces) but not face-transitive. A quasi-regular dual is face-transitive and edge-transitive (and hence every vertex is regular) but not vertex-transitive. * Semi-regular: vertex-transitive but not edge-transitive, and every face is a regular polygon. (This is one of several definitions of the term, depending on author. Some definitions overlap with the quasi-regular class.) These polyhedra include the semiregular prisms and
antiprism In geometry, an antiprism or is a polyhedron composed of two parallel direct copies (not mirror images) of an polygon, connected by an alternating band of triangles. They are represented by the Conway notation . Antiprisms are a subclass o ...
s. A semi-regular dual is face-transitive but not vertex-transitive, and every vertex is regular. *
Uniform A uniform is a variety of clothing worn by members of an organization while participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency services, ...
: vertex-transitive and every face is a regular polygon, i.e., it is regular, quasi-regular or semi-regular. A uniform dual is face-transitive and has regular vertices, but is not necessarily vertex-transitive. * Isogonal: vertex-transitive. * Isotoxal: edge-transitive. *
Isohedral In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
: face-transitive. * Noble: face-transitive and vertex-transitive (but not necessarily edge-transitive). The regular polyhedra are also noble; they are the only noble uniform polyhedra. The duals of noble polyhedra are themselves noble. Some classes of polyhedra have only a single main axis of symmetry. These include the pyramids, bipyramids,
trapezohedra In geometry, an trapezohedron, -trapezohedron, -antidipyramid, -antibipyramid, or -deltohedron is the dual polyhedron of an antiprism. The faces of an are congruent and symmetrically staggered; they are called ''twisted kites''. With a hi ...
, cupolae, as well as the semiregular prisms and antiprisms.


Regular polyhedra

Regular polyhedra are the most highly symmetrical. Altogether there are nine regular polyhedra: five convex and four star polyhedra. The five convex examples have been known since antiquity and are called the
Platonic solids In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
. These are the triangular pyramid or
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
, cube,
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
,
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
and icosahedron: There are also four regular star polyhedra, known as the Kepler–Poinsot polyhedra after their discoverers. The dual of a regular polyhedron is also regular.


Uniform polyhedra and their duals

Uniform polyhedra are vertex-transitive and every face is a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
. They may be subdivided into the regular, quasi-regular, or semi-regular, and may be convex or starry. The duals of the uniform polyhedra have irregular faces but are
face-transitive In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
, and every
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
is a regular polygon. A uniform polyhedron has the same symmetry orbits as its dual, with the faces and vertices simply swapped over. The duals of the convex Archimedean polyhedra are sometimes called the Catalan solids. The uniform polyhedra and their duals are traditionally classified according to their degree of symmetry, and whether they are
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
or not.


Isohedra

An isohedron is a polyhedron with symmetries acting transitively on its faces. Their topology can be represented by a
face configuration In geometry, a vertex configurationCrystallography ...
. All 5
Platonic solids In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges c ...
and 13 Catalan solids are isohedra, as well as the infinite families of
trapezohedra In geometry, an trapezohedron, -trapezohedron, -antidipyramid, -antibipyramid, or -deltohedron is the dual polyhedron of an antiprism. The faces of an are congruent and symmetrically staggered; they are called ''twisted kites''. With a hi ...
and bipyramids. Some isohedra allow geometric variations including concave and self-intersecting forms.


Symmetry groups

Many of the symmetries or
point groups in three dimensions In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometrie ...
are named after polyhedra having the associated symmetry. These include: * T – chiral
tetrahedral symmetry 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
; the rotation group for a regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
; order 12. * Td – full
tetrahedral symmetry 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
; the symmetry group for a regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
; order 24. * Th
pyritohedral symmetry image:tetrahedron.jpg, 150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that c ...
; the symmetry of a
pyritohedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentago ...
; order 24. * O – chiral
octahedral symmetry A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedr ...
;the rotation group of the cube and
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
; order 24. * Oh – full
octahedral symmetry A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedr ...
; the symmetry group of the cube and
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
; order 48. * I – chiral
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
; the rotation group of the icosahedron and the
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
; order 60. * Ih – full
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
; the symmetry group of the icosahedron and the
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
; order 120. * Cnv''n''-fold pyramidal symmetry * Dnh''n''-fold prismatic symmetry * Dnv''n''-fold antiprismatic symmetry. Those with
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
symmetry do not have
reflection symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D the ...
and hence have two enantiomorphous forms which are reflections of each other. Examples include the snub cuboctahedron and snub icosidodecahedron.


Other important families of polyhedra


Polyhedra with regular faces

Besides the regular and uniform polyhedra, there are some other classes which have regular faces but lower overall symmetry.


Equal regular faces

Convex polyhedra where every face is the same kind of regular polygon may be found among three families: * Triangles: These polyhedra are called deltahedra. There are eight convex deltahedra: three of the Platonic solids and five non-uniform examples. * Squares: The cube is the only convex example. Other examples (the
polycube upAll 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total A puzzle involving arranging nine L tricubes into a 3×3 cube A polycube is a solid figure formed by j ...
s) can be obtained by joining cubes together, although care must be taken if
coplanar In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
faces are to be avoided. * Pentagons: The regular dodecahedron is the only convex example. Polyhedra with congruent regular faces of six or more sides are all non-convex. The total number of convex polyhedra with equal regular faces is thus ten: the five Platonic solids and the five non-uniform deltahedra. There are infinitely many non-convex examples. Infinite sponge-like examples called infinite skew polyhedra exist in some of these families.


Johnson solids

Norman Johnson sought which convex non-uniform polyhedra had regular faces, although not necessarily all alike. In 1966, he published a list of 92 such solids, gave them names and numbers, and conjectured that there were no others.
Victor Zalgaller Victor (Viktor) Abramovich Zalgaller ( he, ויקטור אבּרמוביץ' זלגלר; russian: Виктор Абрамович Залгаллер; 25 December 1920 – 2 October 2020) was a Russian-Israeli mathematician in the fields of ge ...
proved in 1969 that the list of these Johnson solids was complete.


Pyramids

Pyramids include some of the most time-honoured and famous of all polyhedra, such as the four-sided Egyptian pyramids.


Stellations and facettings

Stellation of a polyhedron is the process of extending the faces (within their planes) so that they meet to form a new polyhedron. Faceting is the process of removing parts of a polyhedron to create new faces, or facets, without creating any new vertices.Bridge, N.J. Facetting the dodecahedron, ''Acta crystallographica'' A30 (1974), pp. 548–552. A facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a ''
face The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may aff ...
''. Stellation and faceting are inverse or reciprocal processes: the dual of some stellation is a faceting of the dual to the original polyhedron.


Zonohedra

A zonohedron is a convex polyhedron in which every face is a polygon that is symmetric under rotations through 180°. Zonohedra can also be characterized as the
Minkowski sum In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set : A + B = \. Analogously, the Minkowski ...
s of line segments, and include several important space-filling polyhedra.


Space-filling polyhedra

A space-filling polyhedron packs with copies of itself to fill space. Such a close-packing or space-filling is often called a tessellation of space or a honeycomb. Space-filling polyhedra must have a
Dehn invariant In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who us ...
equal to zero. Some honeycombs involve more than one kind of polyhedron.


Lattice polyhedra

A convex polyhedron in which all vertices have integer coordinates is called a lattice polyhedron or
integral polyhedron Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is ...
. The Ehrhart polynomial of a lattice polyhedron counts how many points with
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
coordinates lie within a scaled copy of the polyhedron, as a function of the scale factor. The study of these polynomials lies at the intersection of combinatorics and
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
. There is a far-reaching equivalence between lattice polyhedra and certain
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
called toric varieties. This was used by Stanley to prove the Dehn–Sommerville equations for simplicial polytopes.


Flexible polyhedra

It is possible for some polyhedra to change their overall shape, while keeping the shapes of their faces the same, by varying the angles of their edges. A polyhedron that can do this is called a flexible polyhedron. By Cauchy's rigidity theorem, flexible polyhedra must be non-convex. The volume of a flexible polyhedron must remain constant as it flexes; this result is known as the bellows theorem.


Compounds

A polyhedral compound is made of two or more polyhedra sharing a common centre. Symmetrical compounds often share the same vertices as other well-known polyhedra and may often also be formed by stellation. Some are listed in the list of Wenninger polyhedron models.


Orthogonal polyhedra

An orthogonal polyhedron is one all of whose faces meet at right angles, and all of whose edges are parallel to axes of a Cartesian coordinate system. ( Jessen's icosahedron provides an example of a polyhedron meeting one but not both of these two conditions.) Aside from the
rectangular cuboid In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cub ...
s, orthogonal polyhedra are nonconvex. They are the 3D analogs of 2D orthogonal polygons, also known as rectilinear polygons. Orthogonal polyhedra are used in computational geometry, where their constrained structure has enabled advances on problems unsolved for arbitrary polyhedra, for example, unfolding the surface of a polyhedron to a polygonal net.
Polycube upAll 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total A puzzle involving arranging nine L tricubes into a 3×3 cube A polycube is a solid figure formed by j ...
s are a special case of orthogonal polyhedra that can be decomposed into identical cubes, and are three-dimensional analogues of planar
polyomino A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in pop ...
es.


Embedded regular maps with planar faces

Regular maps are flag transitive abstract 2-manifolds and they have been studied already in the nineteenth century. Some of them have 3-dimensional polyhedral embeddings like the one that represents Klein's quartic.


Canonical polyhedra

Every convex polyhedron is combinatorially equivalent to an essentially unique
canonical polyhedron In geometry, the midsphere or intersphere of a polyhedron is a sphere which is tangent to every edge of the polyhedron. That is to say, it touches any given edge at exactly one point. Not every polyhedron has a midsphere, but for every convex po ...
, a polyhedron which has a midsphere tangent to each of its edges.


Generalisations of polyhedra

The name 'polyhedron' has come to be used for a variety of objects having similar structural properties to traditional polyhedra.


Apeirohedra

A classical polyhedral surface has a finite number of faces, joined in pairs along edges. The apeirohedra form a related class of objects with infinitely many faces. Examples of apeirohedra include: * tilings or
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety o ...
s of the plane, and * sponge-like structures called infinite skew polyhedra.


Complex polyhedra

There are objects called complex polyhedra, for which the underlying space is a
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
Hilbert space rather than real Euclidean space. Precise definitions exist only for the regular complex polyhedra, whose symmetry groups are
complex reflection group In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise. Complex reflection groups arise ...
s. The complex polyhedra are mathematically more closely related to configurations than to real polyhedra.


Curved polyhedra

Some fields of study allow polyhedra to have curved faces and edges. Curved faces can allow
digon In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
al faces to exist with a positive area.


Spherical polyhedra

When the surface of a sphere is divided by finitely many great arcs (equivalently, by planes passing through the center of the sphere), the result is called a spherical polyhedron. Many convex polytopes having some degree of symmetry (for example, all the Platonic solids) can be projected onto the surface of a concentric sphere to produce a spherical polyhedron. However, the reverse process is not always possible; some spherical polyhedra (such as the hosohedra) have no flat-faced analogue.


Curved spacefilling polyhedra

If faces are allowed to be concave as well as convex, adjacent faces may be made to meet together with no gap. Some of these curved polyhedra can pack together to fill space. Two important types are: * Bubbles in froths and foams, such as Weaire-Phelan bubbles. * Forms used in architecture.


Ideal polyhedra

Convex polyhedra can be defined in three-dimensional
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
in the same way as in Euclidean space, as the convex hulls of finite sets of points. However, in hyperbolic space, it is also possible to consider ideal points as well as the points that lie within the space. An
ideal polyhedron In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull o ...
is the convex hull of a finite set of ideal points. Its faces are ideal polygons, but its edges are defined by entire hyperbolic lines rather than line segments, and its vertices (the ideal points of which it is the convex hull) do not lie within the hyperbolic space.


Skeletons and polyhedra as graphs

By forgetting the face structure, any polyhedron gives rise to a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
, called its skeleton, with corresponding vertices and edges. Such figures have a long history:
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 14522 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, Drawing, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially res ...
devised frame models of the regular solids, which he drew for Pacioli's book ''Divina Proportione'', and similar wire-frame polyhedra appear in
M.C. Escher Maurits Cornelis Escher (; 17 June 1898 – 27 March 1972) was a Dutch graphic artist who made Mathematics and art, mathematically inspired woodcuts, lithography, lithographs, and mezzotints. Despite wide popular interest, Escher was for ...
's print ''Stars''. One highlight of this approach is Steinitz's theorem, which gives a purely graph-theoretic characterization of the skeletons of convex polyhedra: it states that the skeleton of every convex polyhedron is a 3-connected planar graph, and every 3-connected planar graph is the skeleton of some convex polyhedron. An early idea of abstract polyhedra was developed in
Branko Grünbaum Branko Grünbaum ( he, ברנקו גרונבאום; 2 October 1929 – 14 September 2018) was a Croatian-born mathematician of Jewish descentskew as well as planar. The graph perspective allows one to apply graph terminology and properties to polyhedra. For example, the tetrahedron and Császár polyhedron are the only known polyhedra whose skeletons are
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
s (K4), and various symmetry restrictions on polyhedra give rise to skeletons that are
symmetric graph In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In oth ...
s.


Alternative usages

From the latter half of the twentieth century, various mathematical constructs have been found to have properties also present in traditional polyhedra. Rather than confining the term "polyhedron" to describe a three-dimensional polytope, it has been adopted to describe various related but distinct kinds of structure.


Higher-dimensional polyhedra

A polyhedron has been defined as a set of points in
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine comb ...
(or Euclidean) space of any dimension ''n'' that has flat sides. It may alternatively be defined as the intersection of finitely many half-spaces. Unlike a conventional polyhedron, it may be bounded or unbounded. In this meaning, a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
is a bounded polyhedron. Analytically, such a convex polyhedron is expressed as the solution set for a system of linear inequalities. Defining polyhedra in this way provides a geometric perspective for problems in linear programming. Many traditional polyhedral forms are polyhedra in this sense. Other examples include: * A quadrant in the plane. For instance, the region of the cartesian plane consisting of all points above the horizontal axis and to the right of the vertical axis: . Its sides are the two positive axes, and it is otherwise unbounded. * An octant in Euclidean 3-space, . * A prism of infinite extent. For instance a doubly infinite square prism in 3-space, consisting of a square in the ''xy''-plane swept along the ''z''-axis: . * Each
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
in a
Voronoi tessellation Voronoi or Voronoy is a Slavic masculine surname; its feminine counterpart is Voronaya. It may refer to *Georgy Voronoy (1868–1908), Russian and Ukrainian mathematician **Voronoi diagram **Weighted Voronoi diagram ** Voronoi deformation density ** ...
is a convex polyhedron. In the Voronoi tessellation of a set ''S'', the cell ''A'' corresponding to a point is bounded (hence a traditional polyhedron) when ''c'' lies in the interior of the convex hull of ''S'', and otherwise (when ''c'' lies on the
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment * ''Boundaries'' (2016 film), a 2016 Canadian film * ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film *Boundary (cricket), the edge of the pla ...
of the convex hull of ''S'') ''A'' is unbounded.


Topological polyhedra

A topological polytope is a topological space given along with a specific decomposition into shapes that are topologically equivalent to convex polytopes and that are attached to each other in a regular way. Such a figure is called ''simplicial'' if each of its regions is a simplex, i.e. in an ''n''-dimensional space each region has ''n''+1 vertices. The dual of a simplicial polytope is called ''simple''. Similarly, a widely studied class of polytopes (polyhedra) is that of cubical polyhedra, when the basic building block is an ''n''-dimensional cube.


Abstract polyhedra

An
abstract polytope In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines. A geometric polytope is said to be ...
is a partially ordered set (poset) of elements whose partial ordering obeys certain rules of incidence (connectivity) and ranking. The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope. An abstract polyhedron is an abstract polytope having the following ranking: * rank 3: The maximal element, sometimes identified with the body. * rank 2: The polygonal faces. * rank 1: The edges. * rank 0: the vertices. * rank −1: The empty set, sometimes identified with the ''null polytope'' or ''nullitope''. Any geometric polyhedron is then said to be a "realization" in real space of the abstract poset as described above.


History


Ancient

;Prehistory Polyhedra appeared in early architectural forms such as cubes and cuboids, with the earliest four-sided pyramids of ancient
Egypt Egypt ( ar, مصر , ), officially the Arab Republic of Egypt, is a transcontinental country spanning the northeast corner of Africa and southwest corner of Asia via a land bridge formed by the Sinai Peninsula. It is bordered by the Medit ...
also dating from the Stone Age. The
Etruscans The Etruscan civilization () was developed by a people of Etruria in ancient Italy with a common language and culture who formed a federation of city-states. After conquering adjacent lands, its territory covered, at its greatest extent, rou ...
preceded the Greeks in their awareness of at least some of the regular polyhedra, as evidenced by the discovery of an Etruscan
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
made of
soapstone Soapstone (also known as steatite or soaprock) is a talc-schist, which is a type of metamorphic rock. It is composed largely of the magnesium rich mineral talc. It is produced by dynamothermal metamorphism and metasomatism, which occur in the ...
on Monte Loffa. Its faces were marked with different designs, suggesting to some scholars that it may have been used as a gaming die. ;Greek civilisation The earliest known ''written'' records of these shapes come from Classical
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
authors, who also gave the first known mathematical description of them. The earlier Greeks were interested primarily in the convex regular polyhedra, which came to be known as the Platonic solids.
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politi ...
knew at least three of them, and Theaetetus (circa 417 B. C.) described all five. Eventually,
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
described their construction in his '' Elements''. Later, Archimedes expanded his study to the convex uniform polyhedra which now bear his name. His original work is lost and his solids come down to us through Pappus. ;China Cubical gaming dice in China have been dated back as early as 600 B.C. By 236 AD, Liu Hui was describing the dissection of the cube into its characteristic tetrahedron (orthoscheme) and related solids, using assemblages of these solids as the basis for calculating volumes of earth to be moved during engineering excavations. ;Islamic civilisation After the end of the Classical era, scholars in the Islamic civilisation continued to take the Greek knowledge forward (see Mathematics in medieval Islam). The 9th century scholar
Thabit ibn Qurra Thabit ( ar, ) is an Arabic name for males that means "the imperturbable one". It is sometimes spelled Thabet. People with the patronymic * Ibn Thabit, Libyan hip-hop musician * Asim ibn Thabit, companion of Muhammad * Hassan ibn Sabit (died 674 ...
gave formulae for calculating the volumes of polyhedra such as truncated pyramids. Then in the 10th century Abu'l Wafa described the convex regular and quasiregular spherical polyhedra.


Renaissance

As with other areas of Greek thought maintained and enhanced by Islamic scholars, Western interest in polyhedra revived during the Italian
Renaissance The Renaissance ( , ) , from , with the same meanings. is a period in European history The history of Europe is traditionally divided into four time periods: prehistoric Europe (prior to about 800 BC), classical antiquity (800 BC to AD ...
. Artists constructed skeletal polyhedra, depicting them from life as a part of their investigations into perspective. Several appear in marquetry panels of the period. Piero della Francesca gave the first written description of direct geometrical construction of such perspective views of polyhedra.
Leonardo da Vinci Leonardo di ser Piero da Vinci (15 April 14522 May 1519) was an Italian polymath of the High Renaissance who was active as a painter, Drawing, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially res ...
made skeletal models of several polyhedra and drew illustrations of them for a book by Pacioli. A painting by an anonymous artist of Pacioli and a pupil depicts a glass
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
half-filled with water. As the Renaissance spread beyond Italy, later artists such as
Wenzel Jamnitzer Wenzel Jamnitzer (sometimes Jamitzer, or Wenzel ''Gemniczer'') (1507/1508 – 19 December 1585) was a Northern Mannerist goldsmith, artist, and printmaker in etching, who worked in Nuremberg. He was the best known German goldsmith of his e ...
, Dürer and others also depicted polyhedra of various kinds, many of them novel, in imaginative etchings.


Star polyhedra

For almost 2,000 years, the concept of a polyhedron as a convex solid had remained as developed by the ancient Greek mathematicians. During the
Renaissance The Renaissance ( , ) , from , with the same meanings. is a period in European history The history of Europe is traditionally divided into four time periods: prehistoric Europe (prior to about 800 BC), classical antiquity (800 BC to AD ...
star forms were discovered. A marble tarsia in the floor of St. Mark's Basilica, Venice, depicts a stellated dodecahedron. Artists such as
Wenzel Jamnitzer Wenzel Jamnitzer (sometimes Jamitzer, or Wenzel ''Gemniczer'') (1507/1508 – 19 December 1585) was a Northern Mannerist goldsmith, artist, and printmaker in etching, who worked in Nuremberg. He was the best known German goldsmith of his e ...
delighted in depicting novel star-like forms of increasing complexity. Johannes Kepler (1571–1630) used star polygons, typically
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle arou ...
s, to build star polyhedra. Some of these figures may have been discovered before Kepler's time, but he was the first to recognize that they could be considered "regular" if one removed the restriction that regular polyhedra must be convex. Later, Louis Poinsot realised that star
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s (circuits around each corner) can also be used, and discovered the remaining two regular star polyhedra. Cauchy proved Poinsot's list complete, and Cayley gave them their accepted English names: (Kepler's) the
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeti ...
and
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each ve ...
, and (Poinsot's) the
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeti ...
and
great dodecahedron In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagon ...
. Collectively they are called the Kepler–Poinsot polyhedra. The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. Most stellations are not regular. The study of stellations of the Platonic solids was given a big push by H.S.M. Coxeter and others in 1938, with the now famous paper ''The 59 icosahedra''. The reciprocal process to stellation is called
facetting Stella octangula as a faceting of the cube In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices. New edges of a faceted polyhedron may be cre ...
(or faceting). Every stellation of one polytope is dual, or reciprocal, to some facetting of the dual polytope. The regular star polyhedra can also be obtained by facetting the Platonic solids. listed the simpler facettings of the dodecahedron, and reciprocated them to discover a stellation of the icosahedron that was missing from the set of "59".. More have been discovered since, and the story is not yet ended.


Euler's formula and topology

Two other modern mathematical developments had a profound effect on polyhedron theory. In 1750
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
for the first time considered the edges of a polyhedron, allowing him to discover his polyhedron formula relating the number of vertices, edges and faces. This signalled the birth of
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, sometimes referred to as "rubber sheet geometry", and Henri Poincaré developed its core ideas around the end of the nineteenth century. This allowed many longstanding issues over what was or was not a polyhedron to be resolved. Max Brückner summarised work on polyhedra to date, including many findings of his own, in his book "Vielecke und Vielflache: Theorie und Geschichte" (Polygons and polyhedra: Theory and History). Published in German in 1900, it remained little known. Meanwhile, the discovery of higher dimensions led to the idea of a polyhedron as a three-dimensional example of the more general polytope.


Twentieth-century revival

By the early years of the twentieth century, mathematicians had moved on and geometry was little studied. Coxeter's analysis in ''The Fifty-Nine Icosahedra'' introduced modern ideas from
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
and combinatorics into the study of polyhedra, signalling a rebirth of interest in geometry. Coxeter himself went on to enumerate the star uniform polyhedra for the first time, to treat tilings of the plane as polyhedra, to discover the regular skew polyhedra and to develop the theory of complex polyhedra first discovered by Shephard in 1952, as well as making fundamental contributions to many other areas of geometry. In the second part of the twentieth century, Grünbaum published important works in two areas. One was in convex polytopes, where he noted a tendency among mathematicians to define a "polyhedron" in different and sometimes incompatible ways to suit the needs of the moment. The other was a series of papers broadening the accepted definition of a polyhedron, for example discovering many new
regular polyhedra A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equival ...
. At the close of the 20th century these latter ideas merged with other work on incidence complexes to create the modern idea of an abstract polyhedron (as an abstract 3-polytope), notably presented by McMullen and Schulte.


In nature

For natural occurrences of regular polyhedra, see . Irregular polyhedra appear in nature as crystals.


See also

*
Defect A defect is a physical, functional, or aesthetic attribute of a product or service that exhibits that the product or service failed to meet one of the desired specifications. Defect, defects or defected may also refer to: Examples * Angular defec ...
* Deltohedron * Extension of a polyhedron *
Goldberg polyhedron In mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three pro ...
* List of books about polyhedra * List of small polyhedra by vertex count * Near-miss Johnson solid *
Polyhedron model A polyhedron model is a physical construction of a polyhedron, constructed from cardboard, plastic board, wood board or other panel material, or, less commonly, solid material. Since there are 75 uniform polyhedra, including the five regular con ...
s *
Schlegel diagram In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the orig ...
*
Spidron ''This article discusses the geometric figure; for the science-fiction character see Spidron (character).'' In geometry, a spidron is a continuous plane geometry, flat geometric figure composed entirely of triangles, where, for every pair of joinin ...
*
Lists of shapes Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. Mathematics * List of mathematical shapes * List of two- ...
* Stella (software)


References


Notes


Sources

* . * . * . * .


External links


General theory

*
Polyhedra Pages

Uniform Solution for Uniform Polyhedra by Dr. Zvi Har'El



Lists and databases of polyhedra



– The Encyclopedia of Polyhedra.

– Contains a peer reviewed selection of polyhedra with unusual properties.

– Virtual polyhedra.
Paper Models of Uniform (and other) PolyhedraPolyhedra Viewer
– Web-based tool for visualizing the relationships between the convex, regular-faced polyhedra.


Free software



– An interactive and free collection of polyhedra in Java. Features includes nets, planar sections, duals, truncations and stellations of more than 300 polyhedra.

– Explorer java applet, includes a variety of 3d viewer options.
openSCAD
– Free cross-platform software for programmers. Polyhedra are just one of the things you can model. The openSCAD User Manual is also available.
OpenVolumeMesh
– An open source cross-platform C++ library for handling polyhedral meshes. Developed by the Aachen Computer Graphics Group, RWTH Aachen University.
Polyhedronisme
– Web-based tool for generating polyhedra models using
Conway Polyhedron Notation In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using o ...
. Models can be exported as 2D PNG images, or as 3D OBJ or VRML2 files. The 3D files can be opened in CAD software, or uploaded for 3D printing at services such a
Shapeways


Resources for making physical models


Paper Models of Polyhedra
Free nets of polyhedra.
Simple instructions for building over 30 paper polyhedra


– Polyhedra models constructed without use of glue.
Adopt a Polyhedron
- Interactive display, nets and 3D printer data for all combinatorial types of polyhedra with up to nine vertices. {{Authority control