Pockels effect
   HOME

TheInfoList



OR:

The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces
birefringence Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefri ...
in an optical medium induced by an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
. In the Pockels effect, also known as the linear electro-optic effect, the birefringence is proportional to the electric field. In the
Kerr effect The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chan ...
, the refractive index change (birefringence) is proportional to the square of the field. The Pockels effect occurs only in crystals that lack inversion symmetry, such as KH2PO4 (KDP), KD2PO4 (KD*P or DKDP),
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
(LiNbO3), and in other non-centrosymmetric media such as electric-field poled polymers or glasses. The electro-optic properties of materials like KDP and its isomorphs that exhibits that Pockels effect has been extensively studied over the years to allow accurate models for simulations.


Pockels cells

Pockels cells are voltage-controlled
wave plate A waveplate or retarder is an optical device that alters the polarization state of a light wave travelling through it. Two common types of waveplates are the ''half-wave plate'', which shifts the polarization direction of linearly polarized ligh ...
s. The Pockels effect is the basis of the operation of Pockels cells. Pockels cells may be used to rotate the polarization of a beam that passes through. See
applications Application may refer to: Mathematics and computing * Application software, computer software designed to help the user to perform specific tasks ** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
below for uses. A transverse Pockels cell consists of two crystals in opposite orientation, which together give a zero-order wave plate when the voltage is turned off. This is often not perfect and drifts with temperature. But the mechanical alignment of the crystal axis is not so critical and is often done by hand without screws; while misalignment leads to some energy in the wrong ray (either ''e'' or ''o''for example, horizontal or vertical), in contrast to the longitudinal case, the loss is not amplified through the length of the crystal. The electric field can be applied to the crystal medium either longitudinally or transversely to the light beam. Longitudinal Pockels cells need transparent or ring electrodes. Transverse voltage requirements can be reduced by lengthening the crystal. Alignment of the crystal axis with the ray axis is critical. Misalignment leads to
birefringence Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefri ...
and to a large phase shift across the long crystal. This leads to polarization
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
if the alignment is not exactly parallel or perpendicular to the polarization.


Dynamics within the cell

Because of the high relative
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
of εr ≈ 36 inside the crystal, changes in the electric field propagate at a speed of only ''c''/6. Fast non-fiber optic cells are thus embedded into a matched transmission line. Putting it at the end of a transmission line leads to reflections and doubled switching time. The signal from the driver is split into parallel lines that lead to both ends of the crystal. When they meet in the crystal, their voltages add up. Pockels cells for
fiber optics An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
may employ a traveling wave design to reduce current requirements and increase speed. Usable crystals also exhibit the
piezoelectric effect Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word '' ...
to some degree ( RTP has the lowest, BBO and
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
are high). After a voltage change, sound waves start propagating from the sides of the crystal to the middle. This is important not for pulse pickers, but for
boxcar window In discrete-time signal processing, windowing is a preliminary signal shaping technique, usually applied to improve the appearance and usefulness of a subsequent Discrete Fourier Transform. Several ''window functions'' can be defined, based on a ...
s. Guard space between the light and the faces of the crystals needs to be larger for longer holding times. Behind the sound wave the crystal stays deformed in the equilibrium position for the high electric field. This increases the polarization. Due to the growing of the polarized volume the electric field in the crystal in front of the wave increases linearly, or the driver has to provide a constant current leakage.


The driver electronics

The driver must withstand the doubled voltage returned to it. Pockels cells behave like a
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
. When switching these to high voltage, a high charge is needed; consequently, 3 ns switching requires about 40 A for a 5 mm aperture. Shorter cables reduce the amount of charge wasted in transporting current to the cell. The driver may employ many transistors connected parallel and serial. The transistors are floating and need DC isolation for their gates. To do this, the gate signal is connected via
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
, or the gates are driven by a large
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
. In this case, careful compensation for feedback is needed to prevent oscillation. The driver may employ a cascade of transistors and a triode. In a classic, commercial circuit the last transistor is an IRF830
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
and the triode is an Eimac Y690
triode A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
. The setup with a single triode has the lowest capacity; this even justifies turning off the cell by applying the double voltage. A resistor ensures the leakage current needed by the crystal and later to recharge the storage capacitor. The Y690 switches up to 10 kV and the cathode delivers 40 A if the grid is on +400 V. In this case the grid current is 8 A and the input impedance is thus 50 ohms, which matches standard
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
s, and the MOSFET can thus be placed remotely. Some of the 50 ohms are spent on an additional resistor which pulls the bias on −100 V. The IRF can switch 500 volts. It can deliver 18 A pulsed. Its leads function as an inductance, a storage capacitor is employed, the 50 ohm coax cable is connected, the MOSFET has an internal resistance, and in the end this is a
critically damped Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples inc ...
RLC circuit An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent compon ...
, which is fired by a pulse to the gate of the MOSFET. The gate needs 5 V pulses (range: ±20 V) while provided with 22 nC. Thus the current gain of this transistor is one for 3 ns switching, but it still has voltage gain. Thus it could theoretically also be used in common gate configuration and not in
common source In electronics, a common-source amplifier is one of three basic single-stage field-effect transistor (FET) amplifier topologies, typically used as a voltage or transconductance amplifier. The easiest way to tell if a FET is common source, comm ...
configuration. Transistors, which switch 40 V are typically faster, so in the previous stage a current gain is possible.


Applications

Pockels cells are used in a variety of scientific and technical applications. A Pockels cell, combined with a polarizer, can be used for switching between no optical rotation and 90° rotation, creating a fast shutter capable of "opening" and "closing" in
nanosecond A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10 seconds. The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit ( ...
s. The same technique can be used to impress information on the beam by modulating the rotation between 0° and 90°; the exiting beam's intensity, when viewed through the polarizer, contains an amplitude-modulated signal. This modulated signal can be used for time-resolved electric field measurements when a crystal is exposed to an unknown electric field. Pockels cells are used as a Q-switch to generate short, high-intensity laser pulse. The Pockels cell prevents optical amplification by introducing a polarization dependent loss in the laser cavity. This allows the
gain medium The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a h ...
to have a high
population inversion In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
. When the
gain medium The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a h ...
has the desired
population inversion In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy ...
, the Pockels cell is switched "open", and a short high energy laser pulse is created. Pockels cells are also used in regenerative amplifiers,
chirped pulse amplification Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort pulse, ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The ...
, and cavity dumping to let optical power in and out of lasers and optical amplifiers. Pockels cells can be used for quantum key distribution by polarizing
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s. Pockels cells in conjunction with other EO elements can be combined to form electro-optic probes. A Pockels cell was used by MCA Disco-Vision (
DiscoVision DiscoVision is the name of several things related to the video LaserDisc format. It was the original name of the "Reflective Optical Videodisc System" format later known as "LaserVision" or LaserDisc. Description MCA DiscoVision, Inc. was a div ...
) engineers in the optical videodisc mastering system. Light from an argon-ion laser was passed through the Pockels cell to create pulse modulations corresponding to the original FM video and audio signals to be recorded on the master videodisc. MCA used the Pockels cell in videodisc mastering until the sale to Pioneer Electronics. To increase the quality of the recordings, MCA patented a Pockels cell stabilizer that reduced the second-harmonic distortion that could be created by the Pockels cell during mastering. MCA used either a DRAW (Direct Read After Write) mastering system or a photoresist system. The DRAW system was originally preferred, since it didn't require clean-room conditions during disc recording and allowed instant quality checking during mastering. The original single-sided test pressings from 1976/77 were mastered with the DRAW system as were the "educational", non-feature titles at the format's release in December 1978. Pockels cells are used in two-photon microscopy.


See also

* Electro-optic modulator *
Acousto-optic modulator An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers ...
*
Kerr effect The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chan ...


References

{{DEFAULTSORT:Pockels Effect Nonlinear optics Polarization (waves) Quantum information science