Plasma diagnostics
   HOME

TheInfoList



OR:

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components'
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
, distribution function over energy (
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
), their spatial profiles and dynamics, which enable to derive plasma parameters.


Invasive probe methods


Ball-pen probe

A ball-pen probe is novel technique used to measure directly the plasma potential in magnetized plasmas. The probe was invented by Jiří Adámek in the Institute of Plasma Physics AS CR in 2004. The ball-pen probe balances the electron saturation current to the same magnitude as that of the ion saturation current. In this case, its floating potential becomes identical to the plasma potential. This goal is attained by a ceramic shield, which screens off an adjustable part of the electron current from the probe collector due to the much smaller gyro–radius of the electrons. The electron temperature is proportional to the difference of ball-pen probe(plasma potential) and Langmuir probe (floating potential) potential. Thus, the electron temperature can be obtained directly with high temporal resolution without additional
power supply A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As ...
.


Faraday cup

The conventional Faraday cup is applied for measurements of ion (or electron) flows from plasma boundaries and for
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
.


Langmuir probe

Measurements with electric probes, called
Langmuir probe A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between ...
s, are the oldest and most often used procedures for low-temperature plasmas. The method was developed by
Irving Langmuir Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry. Langmuir's most famous publication is the 1919 ar ...
and his co-workers in the 1920s, and has since been further developed in order to extend its applicability to more general conditions than those presumed by Langmuir. Langmuir probe measurements are based on the estimation of current versus
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
characteristics of a circuit consisting of two metallic electrodes that are both immersed in the plasma under study. Two cases are of interest: (a) The surface areas of the two electrodes differ by several orders of magnitude. This is known as the ''single-probe'' method. (b) The surface areas are very small in comparison with the dimensions of the vessel containing the plasma and approximately equal to each other. This is the ''double-probe'' method. Conventional Langmuir probe theory assumes collisionless movement of charge carriers in the space charge sheath around the probe. Further it is assumed that the sheath boundary is well-defined and that beyond this boundary the plasma is completely undisturbed by the presence of the probe. This means that the
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
caused by the difference between the potential of the probe and the plasma potential at the place where the probe is located is limited to the volume inside the probe sheath boundary. The general theoretical description of a Langmuir probe measurement requires the simultaneous solution of the
Poisson equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with ...
, the collision-free Boltzmann equation or
Vlasov equation The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, e.g. Coulomb. The equation was first suggested for description of plasma ...
, and the
continuity equation A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. ...
with regard to the boundary condition at the probe surface and requiring that, at large distances from the probe, the solution approaches that expected in an undisturbed plasma.


Magnetic (B-dot) probe

If the magnetic field in the plasma is not stationary, either because the plasma as a whole is transient or because the fields are periodic (radio-frequency heating), the rate of change of the magnetic field with time (\dot B, read "B-dot") can be measured locally with a loop or coil of wire. Such coils exploit Faraday's law, whereby a changing magnetic field induces an electric field. The induced voltage can be measured and recorded with common instruments. Also, by Ampere's law, the magnetic field is proportional to the currents that produce it, so the measured magnetic field gives information about the currents flowing in the plasma. Both currents and magnetic fields are important in understanding fundamental plasma physics.


Energy analyzer

An energy analyzer is a probe used to measure the energy distribution of the particles in a plasma. The charged particles are typically separated by their velocities from the electric and/or magnetic fields in the energy analyzer, and then discriminated by only allowing particles with the selected energy range to reach the detector. Energy analyzers that use an electric field as the discriminator are also known as retarding field analyzers. It usually consists of a set of grids biased at different potentials to set up an electric field to repel particles lower than the desired amount of energy away from the detector. In contrast, energy analyzers that employ the use of a magnetic field as a discriminator are very similar to
mass spectrometers Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
. Particles travel through a magnetic field in the probe and require a specific velocity in order to reach the detector. These were first developed in the 1960s, and are typically built to measure ions. (The size of the device is on the order the particle's gyroradius because the discriminator intercepts the path of the gyrating particle.) The energy of neutral particles can also be measured by an energy analyzer, but they first have to be ionized by an electron impact ionizer.


Proton radiography

Proton radiography uses a proton beam from a single source to interact with the magnetic field and/or the electric field in the plasma and the intensity profile of the beam is measured on a screen after the interaction. The magnetic and electric fields in the plasma deflect the beam's trajectory and the deflection causes modulation in the intensity profile. From the intensity profile, one can measure the integrated magnetic field and/or electric field.


Self Excited Electron Plasma Resonance Spectroscopy (SEERS)

Nonlinear effects like the
I-V characteristic IV may refer to: Businesses and organizations *Immigration Voice, an activist organization *Industrievereinigung, Federation of Austrian Industry * Intellectual Ventures, a privately held intellectual property company *InterVarsity Christian Fell ...
of the boundary sheath are utilized for Langmuir probe measurements but they are usually neglected for modelling of RF discharges due to their very inconvenient mathematical treatment. The Self Excited Electron Plasma Resonance Spectroscopy (SEERS) utilizes exactly these nonlinear effects and known resonance effects in RF discharges. The nonlinear elements, in particular the sheaths, provide harmonics in the discharge current and excite the plasma and the sheath at their series resonance characterized by the so-called geometric resonance frequency. SEERS provides the spatially and reciprocally averaged electron plasma density and the effective electron collision rate. The electron collision rate reflects stochastic (pressure) heating and ohmic heating of the electrons. The model for the plasma bulk is based on 2d-fluid model (zero and first order moments of Boltzmann equation) and the full set of the Maxwellian equations leading to the
Helmholtz equation In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation \nabla^2 f = -k^2 f, where is the Laplace operator (or "Laplacian"), is the eigenvalu ...
for the magnetic field. The sheath model is based additionally on the
Poisson equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with ...
.


Passive spectroscopy

Passive spectroscopic methods simply observe the radiation emitted by the plasma.


Doppler shift

If the plasma (or one ionic component of the plasma) is flowing in the direction of the line of sight to the observer, emission lines will be seen at a different frequency due to the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
.


Doppler broadening

The thermal motion of ions will result in a shift of emission lines up or down, depending on whether the ion is moving toward or away from the observer. The magnitude of the shift is proportional to the velocity along the line of sight. The net effect is a characteristic broadening of spectral lines, known as
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Do ...
, from which the ion temperature can be determined.


Stark effect

The splitting of some emission lines due to the
Stark effect The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several compo ...
can be used to determine the local electric field.


Stark broadening

Even if the macroscopic electric field is zero, any single ion will experience an electric field due to the neighboring charged particles in the plasma. This results in a broadening of some lines that can be used to determine the density of the plasma.


Spectral line ratios

The brightness of an
atomic spectral line Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter w ...
emitted by atoms and ions in a gas (or plasma) can depend on the gas's temperature and pressure. Due to the completeness and accuracy of modern collisional radiative models the temperature and density of plasmas can be measured by taking ratios of the emission intensities of various atomic spectral lines.


Zeeman effect

The presence of a magnetic field splits the atomic energy levels due to the
Zeeman effect The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel pr ...
. This leads to broadening or splitting of spectral lines. Analyzing these lines can, therefore, yield the magnetic field strength in the plasma.


Active spectroscopy

Active spectroscopic methods stimulate the plasma atoms in some way and observe the result (emission of radiation, absorption of the stimulating light or others).


Absorption spectroscopy

By shining through the plasma a laser with a wavelength, tuned to a certain transition of one of the species present in the plasma, the absorption profile of that transition could be obtained. This profile provides information not only for the plasma parameters, that could be obtained from the emission profile, but also for the line-integrated number density of the absorbing species.


Beam emission spectroscopy

A beam of neutral atoms is fired into a plasma. Some atoms are excited by collisions within the plasma and emit radiation. This can be used to probe density fluctuations in a turbulent plasma.


Charge exchange recombination spectroscopy

In very hot plasmas (as in magnetic fusion experiments), light elements are fully ionized and don't emit line radiation. When a beam of neutral atoms is fired into the plasma, electrons from beam atoms are transferred to hot plasma ions, which form hydrogenic ions which promptly emit line radiation. This radiation is analyzed for ion density, temperature, and velocity.


Laser-induced fluorescence

If the plasma is not fully ionized but contains ions that fluoresce,
laser-induced fluorescence Laser-induced fluorescence (LIF) or laser-stimulated fluorescence (LSF) is a spectroscopic method in which an atom or molecule is excited to a higher energy level by the absorption of laser light followed by spontaneous emission of light. It was f ...
can provide very detailed information on temperature, density, and flows.


Photodetachment

Photodetachment combines Langmuir probe measurements with an incident laser beam. The incident laser beam is optimised, spatially, sprectrally, and pulse energy, to detach an electron bound to a negative ion. Langmuir probe measurements are conducted to measure the electron density in two situations, one without the incident laser and one with the incident laser. The increase in the electron density with the incident laser gives the negative ion density.


Motional Stark effect

If an atom is moving in a magnetic field, the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
will act in opposite directions on the nucleus and the electrons, just as an electric field does. In the frame of reference of the atom, there ''is'' an electric field, even if there is none in the laboratory frame. Consequently, certain lines will be split by the
Stark effect The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several compo ...
. With an appropriate choice of beam species and velocity and of geometry, this effect can be used to determine the magnetic field in the plasma.


Two-photon absorption laser-induced fluorescence

The two-photon absorption laser-induced fluorescence (TALIF) is a modification of the laser-induced fluorescence technique. In this approach the upper level is excited by absorbing two photons and the subsequent fluorescence caused by the radiative decay of the excited level is observed. TALIF is able to give a measure of absolute ground state atomic densities, such as hydrogen, oxygen, and nitrogen. However, this is only possible with a suitable calibration; this can be done either using a titration method or a more modern comparison with a noble gasses. TALIF is able to give information on not only atomic densities, but also temperatures of species. However, this requires lasers with a high spectral resolution to determine the Gaussian contribution of the temperature broadening against the natural broadening of the two-photon excitation profile and the spectral broadening of the laser itself.


Optical effects from free electrons

The optical diagnostics above measure line radiation from atoms. Alternatively, the effects of free charges on electromagnetic radiation can be used as a diagnostic.


Electron cyclotron emission

In magnetized plasmas, electrons will gyrate around magnetic field lines and emit cyclotron radiation. The frequency of the emission is given by the cyclotron resonance condition. In a sufficiently thick and dense plasma, the intensity of the emission will follow
Planck's law In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature , when there is no net flow of matter or energy between the body and its environment. At ...
, and only depend on the electron temperature.


Faraday rotation

The Faraday effect will rotate the plane of polarization of a beam passing through a plasma with a magnetic field in the direction of the beam. This effect can be used as a diagnostic of the magnetic field, although the information is mixed with the density profile and is usually an integral value only.


Interferometry

If a plasma is placed in one arm of an
interferometer Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
, the phase shift will be proportional to the plasma density integrated along the path.


Thomson scattering

Scattering of laser light from the electrons in a plasma is known as Thomson scattering. The electron temperature can be determined very reliably from the
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Do ...
of the laser line. The electron density can be determined from the intensity of the scattered light, but a careful absolute calibration is required. Although Thomson scattering is dominated by scattering from electrons, since the electrons interact with the ions, in some circumstances information on the ion temperature can also be extracted.


Neutron diagnostics

Fusion plasmas using D-T fuel produce 3.5 MeV alpha particles and 14.1 MeV neutrons. By measuring the neutron flux, plasma properties such as ion temperature and fusion power can be determined.


See also

* Laser schlieren deflectometry


References

* * * {{DEFAULTSORT:Plasma Diagnostics Plasma physics Measuring instruments