Phylogenetic
   HOME

TheInfoList



OR:

In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, phylogenetics (; from
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups of organisms. These relationships are determined by Computational phylogenetics, phylogenetic inference methods that focus on observed
heritable Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic informa ...
traits, such as DNA sequences,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
amino acid sequences, or
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines * Morphology (archaeology), study of the shapes or forms of artifacts * Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies ...
. The result of such an analysis is a phylogenetic tree—a diagram containing a hypothesis of relationships that reflects the evolutionary history of a group of organisms. The tips of a phylogenetic tree can be living taxa or fossils, and represent the "end" or the present time in an evolutionary lineage. A phylogenetic diagram can be rooted or unrooted. A rooted tree diagram indicates the hypothetical common ancestor of the tree. An unrooted tree diagram (a network) makes no assumption about the ancestral line, and does not show the origin or "root" of the taxa in question or the direction of inferred evolutionary transformations. In addition to their use for inferring phylogenetic patterns among taxa, phylogenetic analyses are often employed to represent relationships among genes or individual organisms. Such uses have become central to understanding biodiversity, evolution, ecology, and genomes. Phylogenetics is part of systematics. Taxonomy is the identification, naming and classification of organisms. Classifications are now usually based on phylogenetic data, and many systematists contend that only monophyletic taxa should be recognized as named groups. The degree to which classification depends on inferred evolutionary history differs depending on the school of taxonomy:
phenetics In biology, phenetics ( el, phainein – to appear) , also known as taximetrics, is an attempt to classify organisms based on overall similarity, usually in morphology or other observable traits, regardless of their phylogeny or evolutionary re ...
ignores phylogenetic speculation altogether, trying to represent the similarity between organisms instead;
cladistics Cladistics (; ) is an approach to biological classification in which organisms are categorized in groups (" clades") based on hypotheses of most recent common ancestry. The evidence for hypothesized relationships is typically shared derived cha ...
(phylogenetic systematics) tries to reflect phylogeny in its classifications by only recognizing groups based on shared, derived characters ( synapomorphies); evolutionary taxonomy tries to take into account both the branching pattern and "degree of difference" to find a compromise between them.


Inference of a phylogenetic tree

Usual methods of
phylogenetic inference Computational phylogenetics is the application of computational algorithms, methods, and programs to phylogenetic
involve computational approaches implementing the Optimality criterion, optimality criteria and methods of Maximum parsimony (phylogenetics), parsimony, maximum likelihood (ML), and MCMC-based Bayesian inference. All these depend upon an implicit or explicit mathematical model describing the evolution of characters observed.
Phenetics In biology, phenetics ( el, phainein – to appear) , also known as taximetrics, is an attempt to classify organisms based on overall similarity, usually in morphology or other observable traits, regardless of their phylogeny or evolutionary re ...
, popular in the mid-20th century but now largely obsolete, used
distance matrix In mathematics, computer science and especially graph theory, a distance matrix is a square matrix (two-dimensional array) containing the distances, taken pairwise, between the elements of a set. Depending upon the application involved, the ''dist ...
-based methods to construct trees based on overall similarity in
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines * Morphology (archaeology), study of the shapes or forms of artifacts * Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies ...
or similar observable traits (i.e. in the phenotype or the overall similarity of DNA, not the DNA sequence), which was often assumed to approximate phylogenetic relationships. Prior to 1950, phylogenetic inferences were generally presented as
narrative A narrative, story, or tale is any account of a series of related events or experiences, whether nonfictional (memoir, biography, news report, documentary, travelogue, etc.) or fictional ( fairy tale, fable, legend, thriller, novel, etc. ...
scenarios. Such methods are often ambiguous and lack explicit criteria for evaluating alternative hypotheses.


History

The term "phylogeny" derives from the German , introduced by Haeckel in 1866, and the
Darwinian Darwinism is a theory of biological evolution developed by the English naturalist Charles Darwin (1809–1882) and others, stating that all species of organisms arise and develop through the natural selection of small, inherited variations that ...
approach to classification became known as the "phyletic" approach.


Ernst Haeckel's recapitulation theory

During the late 19th century, Ernst Haeckel's
recapitulation theory The theory of recapitulation, also called the biogenetic law or embryological parallelism—often expressed using Ernst Haeckel's phrase "ontogeny recapitulates phylogeny"—is a historical hypothesis that the development of the embryo of an a ...
, or "biogenetic fundamental law", was widely accepted. It was often expressed as "
ontogeny Ontogeny (also ontogenesis) is the origination and development of an organism (both physical and psychological, e.g., moral development), usually from the time of fertilization of the egg to adult. The term can also be used to refer to the s ...
recapitulates phylogeny", i.e. the development of a single organism during its lifetime, from germ to adult, successively mirrors the adult stages of successive ancestors of the species to which it belongs. But this theory has long been rejected. Instead, ontogeny evolves – the phylogenetic history of a species cannot be read directly from its ontogeny, as Haeckel thought would be possible, but characters from ontogeny can be (and have been) used as data for phylogenetic analyses; the more closely related two species are, the more
apomorphies In phylogenetics, an apomorphy (or derived trait) is a novel character or character state that has evolved from its ancestral form (or plesiomorphy). A synapomorphy is an apomorphy shared by two or more taxa and is therefore hypothesized to have ...
their embryos share.


Timeline of key points

*14th century, ''lex parsimoniae'' (parsimony principle), William of Ockam, English philosopher, theologian, and Franciscan friar, but the idea actually goes back to
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
, precursor concept *1763, Bayesian probability, Rev. Thomas Bayes, precursor concept *18th century, Pierre Simon (Marquis de Laplace), perhaps first to use ML (maximum likelihood), precursor concept *1809, evolutionary theory, '' Philosophie Zoologique,'' Jean-Baptiste de Lamarck, precursor concept, foreshadowed in the 17th century and 18th century by Voltaire, Descartes, and Leibniz, with Leibniz even proposing evolutionary changes to account for observed gaps suggesting that many species had become extinct, others transformed, and different species that share common traits may have at one time been a single race, also foreshadowed by some early Greek philosophers such as Anaximander in the 6th century BC and the atomists of the 5th century BC, who proposed rudimentary theories of evolution *1837, Darwin's notebooks show an evolutionary tree *1843, distinction between homology and analogy (the latter now referred to as
homoplasy Homoplasy, in biology and phylogenetics, is the term used to describe a feature that has been gained or lost independently in separate lineages over the course of evolution. This is different from homology, which is the term used to characterize ...
), Richard Owen, precursor concept *1858, Paleontologist Heinrich Georg Bronn (1800–1862) published a hypothetical tree to illustrating the paleontological "arrival" of new, similar species following the extinction of an older species. Bronn did not propose a mechanism responsible for such phenomena, precursor concept. *1858, elaboration of evolutionary theory, Darwin and Wallace, also in Origin of Species by Darwin the following year, precursor concept *1866, Ernst Haeckel, first publishes his phylogeny-based evolutionary tree, precursor concept *1893, Dollo's Law of Character State Irreversibility, precursor concept *1912, ML recommended, analyzed, and popularized by Ronald Fisher, precursor concept *1921, Tillyard uses term "phylogenetic" and distinguishes between archaic and specialized characters in his classification system *1940, term " clade" coined by Lucien Cuénot *1949, Jackknife resampling, Maurice Quenouille (foreshadowed in '46 by Mahalanobis and extended in '58 by Tukey), precursor concept *1950, Willi Hennig's classic formalization *1952, William Wagner's groundplan divergence method *1953, "cladogenesis" coined *1960, "cladistic" coined by Cain and Harrison *1963, first attempt to use ML (maximum likelihood) for phylogenetics, Edwards and Cavalli-Sforza *1965 **Camin-Sokal parsimony, first parsimony (optimization) criterion and first computer program/algorithm for cladistic analysis both by Camin and Sokal **character compatibility method, also called clique analysis, introduced independently by Camin and Sokal (loc. cit.) and
E. O. Wilson Edward Osborne Wilson (June 10, 1929 – December 26, 2021) was an American biologist, naturalist, entomologist and writer. According to David Attenborough, Wilson was the world's leading expert in his specialty of myrmecology, the study of an ...
*1966 **English translation of Hennig **"cladistics" and "cladogram" coined (Webster's, loc. cit.) *1969 **dynamic and successive weighting, James Farris **Wagner parsimony, Kluge and Farris **CI (consistency index), Kluge and Farris **introduction of pairwise compatibility for clique analysis, Le Quesne *1970, Wagner parsimony generalized by Farris *1971 **first successful application of ML to phylogenetics (for protein sequences), Neyman **Fitch parsimony, Fitch **NNI (nearest neighbour interchange), first branch-swapping search strategy, developed independently by Robinson and Moore et al. **ME (minimum evolution), Kidd and Sgaramella-Zonta (it is unclear if this is the pairwise distance method or related to ML as Edwards and Cavalli-Sforza call ML "minimum evolution") *1972, Adams consensus, Adams *1976, prefix system for ranks, Farris *1977, Dollo parsimony, Farris *1979 **Nelson consensus, Nelson **MAST (maximum agreement subtree)((GAS)greatest agreement subtree), a consensus method, Gordon **bootstrap, Bradley Efron, precursor concept *1980, PHYLIP, first software package for phylogenetic analysis, Felsenstein *1981 **majority consensus, Margush and MacMorris **strict consensus, Sokal and Rohlf **first computationally efficient ML algorithm, Felsenstein *1982 **PHYSIS, Mikevich and Farris **branch and bound, Hendy and Penny *1985 **first cladistic analysis of eukaryotes based on combined phenotypic and genotypic evidence Diana Lipscomb **first issue of ''Cladistics'' **first phylogenetic application of bootstrap, Felsenstein **first phylogenetic application of jackknife, Scott Lanyon *1986, MacClade, Maddison and Maddison *1987, neighbor-joining method Saitou and Nei *1988, Hennig86 (version 1.5), Farris **Bremer support (decay index), Bremer *1989 **RI (retention index), RCI (rescaled consistency index), Farris **HER (homoplasy excess ratio), Archie *1990 **combinable components (semi-strict) consensus, Bremer **SPR (subtree pruning and regrafting), TBR (tree bisection and reconnection), Swofford and Olsen *1991 **DDI (data decisiveness index), Goloboff **first cladistic analysis of eukaryotes based only on phenotypic evidence, Lipscomb *1993, implied weighting Goloboff *1994, reduced consensus: RCC (reduced cladistic consensus) for rooted trees, Wilkinson *1995, reduced consensus RPC (reduced partition consensus) for unrooted trees, Wilkinson *1996, first working methods for BI (Bayesian Inference)independently developed by Li, Mau, and Rannala and Yang and all using MCMC (Markov chain-Monte Carlo) *1998, TNT (Tree Analysis Using New Technology), Goloboff, Farris, and Nixon *1999, Winclada, Nixon *2003, symmetrical resampling, Goloboff *2004,2005, symmilarity metric (using an approximation to Kolmogorov complexity) or NCD (normalized compression distance), Li et al., Cilibrasi and Vitanyi.


Outside biology

Phylogenetic tools and representations (trees and networks) can also be applied to studying the evolution of languages, in the field of quantitative comparative linguistics.


See also

*
Angiosperm Phylogeny Group The Angiosperm Phylogeny Group (APG) is an informal international group of systematic botanists who collaborate to establish a consensus on the taxonomy of flowering plants (angiosperms) that reflects new knowledge about plant relationships disc ...
*
Bauplan A body plan, ( ), or ground plan is a set of morphological features common to many members of a phylum of animals. The vertebrates share one body plan, while invertebrates have many. This term, usually applied to animals, envisages a "bluep ...
* Bioinformatics * Biomathematics * Coalescent theory *
EDGE of Existence programme The ''EDGE of Existence programme'' is a research and conservation initiative that focuses on species deemed to be the world’s most "Evolutionarily Distinct and Globally Endangered" (EDGE). Developed by the Zoological Society of London (ZSL), the ...
* Evolutionary taxonomy *
Language family A language family is a group of languages related through descent from a common ''ancestral language'' or ''parental language'', called the proto-language of that family. The term "family" reflects the tree model of language origination in h ...
* Maximum parsimony * Microbial phylogenetics *
Molecular phylogeny Molecular phylogenetics () is the branch of phylogeny that analyzes genetic, hereditary molecular differences, predominantly in DNA sequences, to gain information on an organism's evolutionary relationships. From these analyses, it is possible to ...
*
Noogenesis The noosphere (alternate spelling noösphere) is a philosophical concept developed and popularized by the Russian-Ukrainian Soviet biogeochemist Vladimir Vernadsky, and the French philosopher and Jesuit priest Pierre Teilhard de Chardin. Vernad ...
*
Ontogeny Ontogeny (also ontogenesis) is the origination and development of an organism (both physical and psychological, e.g., moral development), usually from the time of fertilization of the egg to adult. The term can also be used to refer to the s ...
*
PhyloCode The ''International Code of Phylogenetic Nomenclature'', known as the ''PhyloCode'' for short, is a formal set of rules governing phylogenetic nomenclature. Its current version is specifically designed to regulate the naming of clades, leaving the ...
* Phylodynamics *
Phylogenesis Phylogenesis (from Greek φῦλον ''phylon'' "tribe" + γένεσις ''genesis'' "origin") is the biological process by which a taxon (of any rank) appears. The science that studies these processes is called phylogenetics. These terms may be ...
* Phylogenetic comparative methods *
Phylogenetic network A phylogenetic network is any graph used to visualize evolutionary relationships (either abstractly or explicitly) between nucleotide sequences, genes, chromosomes, genomes, or species. They are employed when reticulation events such as hybrid ...
* Phylogenetic nomenclature *
Phylogenetic tree viewers This list of phylogenetic tree viewing software is a compilation of software tools and web portals used in visualizing phylogenetic trees. Online software Desktop software 1 "All" refers to Microsoft Windows, Apple OSX and Linux; L=Linux, M=Ap ...
*
Phylogenetics software This list of phylogenetics software is a compilation of computational phylogenetics software used to produce phylogenetic trees. Such tools are commonly used in comparative genomics, cladistics, and bioinformatics. Methods for estimating phylogenie ...
* Phylogenomics * Phylogeny (psychoanalysis) *
Phylogeography Phylogeography is the study of the historical processes that may be responsible for the past to present geographic distributions of genealogical lineages. This is accomplished by considering the geographic distribution of individuals in light of ge ...
* Systematics


References


Bibliography

* * * *


External links

* {{Authority control