Orthocentric system
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, an orthocentric system is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of four
points A point is a small dot or the sharp tip of something. Point or points may refer to: Mathematics * Point (geometry), an entity that has a location in space or on a plane, but has no extent; more generally, an element of some abstract topologica ...
on a plane, one of which is the
orthocenter The orthocenter of a triangle, usually denoted by , is the point (geometry), point where the three (possibly extended) altitude (triangle), altitudes intersect. The orthocenter lies inside the triangle if and only if the triangle is acute trian ...
of the
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are
perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
, and the four circles passing through any three of the four points have the same radius. If four points form an orthocentric system, then ''each'' of the four points is the orthocenter of the other three. These four possible triangles will all have the same
nine-point circle In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: * The midpoint of each s ...
. Consequently these four possible triangles must all have
circumcircle In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertex (geometry), vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumrad ...
s with the same circumradius.


The common nine-point circle

The center of this common nine-point circle lies at the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-d ...
of the four orthocentric points. The radius of the common nine-point circle is the distance from the nine-point center to the midpoint of any of the six connectors that join any pair of orthocentric points through which the common nine-point circle passes. The nine-point circle also passes through the three orthogonal intersections at the feet of the altitudes of the four possible triangles. This common nine-point center lies at the midpoint of the connector that joins any orthocentric point to the circumcenter of the triangle formed from the other three orthocentric points. The common nine-point circle is tangent to all 16 incircles and excircles of the four triangles whose vertices form the orthocentric system.Weisstein, Eric W. "Orthocentric System." From MathWorld--A Wolfram Web Resource

/ref>


The common orthic triangle, its incenter, and its excenters

If the six connectors that join any pair of orthocentric points are extended to six lines that intersect each other, they generate seven intersection points. Four of these points are the original orthocentric points and the additional three points are the
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
intersections at the feet of the
altitude Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum (geodesy), datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometr ...
s. The joining of these three orthogonal points into a triangle generates an orthic triangle that is common to all the four possible triangles formed from the four orthocentric points taken three at a time. The
incenter In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bis ...
of this common orthic triangle must be one of the original four orthocentric points. Furthermore, the three remaining points become the excenters of this common orthic triangle. The orthocentric point that becomes the incenter of the orthic triangle is that orthocentric point closest to the common nine-point center. This relationship between the orthic triangle and the original four orthocentric points leads directly to the fact that the incenter and excenters of a reference triangle form an orthocentric system. It is normal to distinguish one of the orthocentric points from the others, specifically the one that is the incenter of the orthic triangle; this one is denoted as the orthocenter of the outer three orthocentric points that are chosen as a reference triangle . In this normalized configuration, the point will always lie within the triangle , and all the angles of triangle will be acute. The four possible triangles referred above are then triangles . The six connectors referred above are . The seven intersections referred above are (the original orthocentric points), and (the feet of the altitudes of triangle and the vertices of the orthic triangle).


The orthocentric system and its orthic axes

The orthic axis associated with a normalized orthocentric system , where is the reference triangle, is a line that passes through three intersection points formed when each side of the orthic triangle meets each side of the reference triangle. Now consider the three other possible triangles, . They each have their own orthic axis.


Euler lines and homothetic orthocentric systems

Let vectors determine the position of each of the four orthocentric points and let be the position vector of , the common nine-point center. Join each of the four orthocentric points to their common nine-point center and extend them into four lines. These four lines now represent the Euler lines of the four possible triangles where the extended line is the Euler line of triangle and the extended line is the
Euler line In geometry, the Euler line, named after Leonhard Euler ( ), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, incl ...
of triangle etc. If a point is chosen on the Euler line of the reference triangle with a position vector such that where is a pure constant independent of the positioning of the four orthocentric points and three more points such that etc., then form an orthocentric system. This generated orthocentric system is always homothetic to the original system of four points with the common nine-point center as the homothetic center and α the ratio of similitude. When is chosen as the centroid , then . When is chosen as the
circumcenter In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcen ...
, then and the generated orthocentric system is
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In modu ...
to the original system as well as being a reflection of it about the nine-point center. In this configuration form a Johnson triangle of the original reference triangle . Consequently the
circumcircle In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertex (geometry), vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumrad ...
s of the four triangles are all equal and form a set of Johnson circles as shown in the diagram adjacent.


Further properties

The four Euler lines of an orthocentric system are orthogonal to the four orthic axes of an orthocentric system. The six connectors that join any pair of the original four orthocentric points will produce pairs of connectors that are orthogonal to each other such that they satisfy the distance equations :\overline^2 + \overline^2 = \overline^2 + \overline^2 = \overline^2 + \overline^2 = 4R^2 where is the common circumradius of the four possible triangles. These equations together with the
law of sines In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\ ...
result in the identity :\frac = \frac = \frac = \frac = \frac = \frac = 2R. Feuerbach's theorem states that the nine-point circle is tangent to the incircle and the three excircles of a reference triangle. Because the nine-point circle is common to all four possible triangles in an orthocentric system it is tangent to 16 circles comprising the incircles and excircles of the four possible triangles. Any conic that passes through the four orthocentric points can only be a rectangular
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
. This is a result of Feuerbach's conic theorem that states that for all circumconics of a reference triangle that also passes through its orthocenter, the locus of the center of such circumconics forms the nine-point circle and that the circumconics can only be rectangular hyperbolas. The locus of the perspectors of this family of rectangular hyperbolas will always lie on the four orthic axes. So if a rectangular hyperbola is drawn through four orthocentric points it will have one fixed center on the common nine-point circle but it will have four perspectors one on each of the orthic axes of the four possible triangles. The one point on the nine-point circle that is the center of this rectangular hyperbola will have four different definitions dependent on which of the four possible triangles is used as the reference triangle. The well documented rectangular hyperbolas that pass through four orthocentric points are the Feuerbach, Jeřábek and Kiepert circumhyperbolas of the reference triangle in a normalized system with as the orthocenter. The four possible triangles have a set of four inconics known as the orthic inconics that share certain properties. The contacts of these inconics with the four possible triangles occur at the vertices of their common orthic triangle. In a normalized orthocentric system the orthic inconic that is tangent to the sides of the triangle is an inellipse and the orthic inconics of the other three possible triangles are hyperbolas. These four orthic inconics also share the same Brianchon point , the orthocentric point closest to the common nine-point center. The centers of these orthic inconics are the
symmedian point In geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the co ...
s of the four possible triangles. There are many documented cubics that pass through a reference triangle and its orthocenter. The circumcubic known as the orthocubic - K006 is interesting in that it passes through three orthocentric systems as well as the three vertices of the orthic triangle (but not the orthocenter of the orthic triangle). The three orthocentric systems are the incenter and excenters, the reference triangle and its orthocenter and finally the orthocenter of the reference triangle together with the three other intersection points that this cubic has with the circumcircle of the reference triangle. Any two polar circles of two triangles in an orthocentric system are
orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
.


Notes


References

* {{cite book , last=Johnson , first=Roger A. , year=1929 , publisher=Houghton Mifflin , title= Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle , url=https://babel.hathitrust.org/cgi/pt?id=wu.89043163211 Republished as ''Advanced Euclidean Geometry''. Dover. 1960; 2007. See especiall
Chapter IX. Three Notable Points


External links

* Eric W. Weisstein
"Orthocenter"
''
MathWorld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science ...
''. * Bernard Giber
Circumcubic K006
* Clark Kimberling,

. ''(Lists some 5000 interesting points associated with any triangle.)'' Triangle geometry Quadrilaterals