Origin and occurrence of fluorine
   HOME

TheInfoList



OR:

Fluorine is relatively rare in the universe compared to other elements of nearby
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
. On
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, fluorine is essentially found only in
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
compounds because of its reactivity. The main commercial source,
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs sca ...
, is a common mineral.


In the universe

At 400 ppb, fluorine is estimated to be the 24th most common element in the universe. It is comparably rare for a light element (elements tend to be more common the lighter they are). All of the elements from atomic number 6 (carbon) to atomic number 12 (magnesium) are hundreds or thousands of times more common than fluorine except for 11 (sodium). One science writer described fluorine as a "shack amongst mansions" in terms of abundance. Fluorine is so rare because it is not a product of the usual nuclear fusion processes in stars. And any created fluorine within stars is rapidly eliminated through strong
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
reactions—either with hydrogen to form oxygen and helium, or with helium to make neon and hydrogen. The presence of fluorine at all—outside of temporary existence in stars—is somewhat of a mystery because of the need to escape these fluorine-destroying reactions. Three theoretical solutions to the mystery exist: In
type II supernova A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo th ...
e, atoms of neon could be hit by
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s during the explosion and converted to fluorine. In Wolf-Rayet stars (blue stars over 40 times heavier than the Sun), a strong solar wind could blow the fluorine out of the star before hydrogen or helium could destroy it. Finally, in asymptotic giant branch (a type of red giant) stars, fusion reactions occur in pulses and
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the conve ...
could lift fluorine out of the inner star. Only the red giant hypothesis has supporting evidence from observations, fluorine cations have been found in planetary nebulae. In space, fluorine commonly combines with hydrogen to form hydrogen fluoride. (This compound has been suggested as a tracer to enable tracking reservoirs of hydrogen in the universe.) In addition to HF, monatomic fluorine has been observed in the interstellar medium. Fluorine cations have been seen in planetary nebulae and in stars, including the Sun.


On Earth

Fluorine is the thirteenth most common element in Earth's crust, comprising between 600 and 700  ppm of the crust by mass. Because of its reactivity, it is essentially only found in compounds.


Commercial sources

Three minerals exist that are industrially relevant sources of fluorine:
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs sca ...
, fluorapatite, and
cryolite Cryolite ( Na3 Al F6, sodium hexafluoroaluminate) is an uncommon mineral identified with the once-large deposit at Ivittuut on the west coast of Greenland, mined commercially until 1987. History Cryolite was first described in 1798 by Danish vete ...
.


Fluorite

Fluorite (CaF2), also called fluorspar, is the main source of commercial fluorine. Fluorite is a colorful mineral associated with hydrothermal deposits. It is common and found worldwide. China supplies more than half of the world's demand and Mexico is the second-largest producer in the world. The United States produced most of the world's fluorite in the early 20th century, but its last mine, in Illinois, shut down in 1995. Canada also exited production in the 1990s. The United Kingdom has declining fluorite mining and has been a net importer since the 1980s.


Fluorapatite

Fluorapatite (Ca5(PO4)3F) is mined along with other apatites for its
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
content and is used mostly for production of fertilizers. Most of the Earth's fluorine is bound in this mineral, but because the percentage within the mineral is low (3.5%), the fluorine is discarded as waste. Only in the United States is there significant recovery. There, the
hexafluorosilicate Hexafluorosilicic acid is an inorganic compound with the chemical formula . Aqueous solutions of hexafluorosilicic acid consist of salts of the cation and hexafluorosilicate anion. These salts and their aqueous solutions are colorless. Hexafluo ...
s produced as byproducts are used to supply water fluoridation.


Cryolite

Cryolite (Na3AlF6) is the least abundant of the three major fluorine-containing minerals, but is a concentrated source of fluorine. It was formerly used directly in aluminium production. However, the main commercial mine, on the west coast of Greenland, closed in 1987.


Minor occurrences

Several other minerals, such as the gemstone topaz, contain fluoride. Fluoride is not significant in seawater or brines, unlike the other halides, because the alkaline earth fluorides precipitate out of water. Commercially insignificant quantities of organofluorines have been observed in volcanic eruptions and in geothermal springs. Their ultimate origin (from biological sources or geological formation) is unclear. The possibility of small amounts of gaseous fluorine within crystals has been debated for many years. One form of fluorite, antozonite, has a smell suggestive of fluorine when crushed. The mineral also has a dark black color, perhaps from free calcium (not bonded to fluoride). In 2012, a study reported detection of trace quantities (0.04% by weight) of diatomic fluorine in antozonite. It was suggested that radiation from small amounts of
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
within the crystals had caused the free fluorine defects.


Citations


Indexed references

* * ** {{refend Fluorine Geochemistry