Ore resources on Mars
   HOME

TheInfoList



OR:

Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
may contain
ores Ore is natural rock or sediment that contains one or more valuable minerals, typically containing metals, that can be mined, treated and sold at a profit.Encyclopædia Britannica. "Ore". Encyclopædia Britannica Online. Retrieved 7 April ...
that would be very useful to potential colonists. The abundance of volcanic features together with widespread cratering are strong evidence for a variety of ores. While nothing may be found on Mars that would justify the high cost of transport to Earth, the more ores that future colonists can obtain from Mars, the easier it would be to build colonies there.


How deposits are made

Ore deposits are produced with the help of large amounts of heat. On Mars, heat can come from molten rock moving under the ground and from crater impacts. Liquid rock under the ground is called
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
. When magma sits in underground chambers, slowly cooling over thousands of years, heavier elements sink. These elements, including
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
,
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
become concentrated at the bottom. When magma is hot, many elements are free to move. As cooling proceeds, the elements bind with each other to form chemical compounds or
minerals In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed ...
. Because some elements do not bond easily to form minerals, they exist freely after nearly all the other elements have bonded into compounds or minerals. The remaining elements are called incompatible elements. Some of them are quite useful to humans. Some examples include
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has s ...
, a metal used in producing superconductors and specialty
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
s,
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between l ...
and
neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarn ...
, and
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lan ...
for television monitors and energy-efficient LED light bulbs. After the mass of magma has cooled and has mostly frozen or crystallized into a solid, a small amount of liquid rock remains. This liquid bears important substances such as
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
,
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, tin,
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
, and
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient ti ...
. Sometimes minerals in the magma chamber are so hot that they occupy a gaseous state. Others are mixed with water and
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
in aqueous solutions. The gases and mineral-rich solutions eventually work their way into cracks and become useful mineral
veins Veins are blood vessels in humans and most other animals that carry blood towards the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are the pulmonary and umbilical veins, both of which carry oxygenated ...
. Ore minerals, including the incompatible elements, remain dissolved in the hot solution, then
crystallize Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposi ...
out when the solution cools. Deposits created by means of these hot solutions are called hydrothermal deposits. Some of the world's most significant deposits of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, silver, lead, mercury,
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
, and
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
started out this way. Nearly all the mines in the northern Black Hills of South Dakota came to be because of hot water deposits of minerals. Cracks often form when a mass of
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
cools because magma contracts and hardens when it cools. Cracks occur both in the frozen magma mass and in the surrounding rocks, so ore is deposited in any kind of the rock that happens to be nearby, but the ore minerals first had to be concentrated by way of a molten mass of magma. Research carried out at Louisiana State University found different types of volcanic materials around volcanoes in Elysium Mons. This showed that Mars can have a magma evolution. This leads to the possibility of finding useful minerals for a future human population on Mars."


Molten rock on Mars

The presence of many huge
volcanoes A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
on Mars shows that large areas were very hot in the past.
Olympus Mons Olympus Mons (; Latin for Mount Olympus) is a large shield volcano on Mars. The volcano has a height of over 21.9 km (13.6 mi or 72,000 ft) as measured by the Mars Orbiter Laser Altimeter (MOLA). Olympus Mons is about two and a ha ...
is the largest volcano in the solar system; Ceraunius Tholus, one of its smaller volcanoes, nears the height of Earth's
Mount Everest Mount Everest (; Tibetan: ''Chomolungma'' ; ) is Earth's highest mountain above sea level, located in the Mahalangur Himal sub-range of the Himalayas. The China–Nepal border runs across its summit point. Its elevation (snow hei ...
. Image:Olympus Mons Region map-la.svg, Olympus Mons Region showing several large volcanoes Image:Cerauniustholus.jpg, Lower volcano is Ceraunius Tholus and upper volcano is
Uranius Tholus Uranius Tholus is a volcano on Mars located in the Tharsis quadrangle at 26.52° north latitude and 262.43° east longitude. It is across with an elevation of and was named after a classical albedo feature name. Uranius Tholus is part of the U ...
as seen by
Mars Global Surveyor ''Mars Global Surveyor'' (MGS) was an American robotic space probe developed by NASA's Jet Propulsion Laboratory and launched November 1996. MGS was a global mapping mission that examined the entire planet, from the ionosphere down through t ...
Mars Orbiter Camera. Ceraunius Tholus is about as high as Earth's
Mount Everest Mount Everest (; Tibetan: ''Chomolungma'' ; ) is Earth's highest mountain above sea level, located in the Mahalangur Himal sub-range of the Himalayas. The China–Nepal border runs across its summit point. Its elevation (snow hei ...
. Image:Lava flow from Arsia Mons in Daedalia Planum.jpg, Lava flow, as seen by
THEMIS In Greek mythology and religion, Themis (; grc, Θέμις, Themis, justice, law, custom) is one of the twelve Titan children of Gaia and Uranus, and the second wife of Zeus. She is the goddess and personification of justice, divine order, fai ...
. Note the shape of the edges.
There is strong evidence for much more widespread sources of heat in the form of
dikes Dyke (UK) or dike (US) may refer to: General uses * Dyke (slang), a slang word meaning "lesbian" * Dike (geology), a subvertical sheet-like intrusion of magma or sediment * Dike (mythology), ''Dikē'', the Greek goddess of moral justice * Dikes ...
, which indicate that magma traveled under the ground. Dikes take the shape of walls and cut across rock layers. In some cases, dikes on Mars have become exposed by
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is d ...
. Image:Dike in Syrtis Major.JPG, Possible dike in
Syrtis Major quadrangle The Syrtis Major quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Syrtis Major quadrangle is also referred to as MC-13 (Mars Chart-13). The quadr ...
as seen by HiRISE under the HiWish program Image:ESP 020230dikes.jpg, Dikes in Arabia, as seen by HiRISE, under the
HiWish program HiWish is a program created by NASA so that anyone can suggest a place for the HiRISE camera on the Mars Reconnaissance Orbiter to photograph. It was started in January 2010. In the first few months of the program 3000 people signed up to use HiRIS ...
. These straight features may indicate where valuable ore deposits may be found by future colonists. Scale bar is 500 meters. Image:24400dike.jpg, Possible dike in
Thaumasia quadrangle The Thaumasia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Thaumasia quadrangle is also referred to as MC-25 (Mars Chart-25). The name comes fr ...
, as seen by HiRISE under the HiWish program. Dikes may have deposited valuable minerals. Image:25558dikes.jpg, Possible dikes in
Oxia Palus quadrangle The Oxia Palus quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Oxia Palus quadrangle is also referred to as MC-11 (Mars Chart-11). The quadrangl ...
, as seen by HiRISE under HiWish program ESP 042830 1675dikes.jpg, Possible dike, as seen by HiRISE under the HiWish program. Image located in Iapygia quadrangle. Image: Huo Hsing Vallis in Syrtis Major.JPG, Straight ridges may be
dikes Dyke (UK) or dike (US) may refer to: General uses * Dyke (slang), a slang word meaning "lesbian" * Dike (geology), a subvertical sheet-like intrusion of magma or sediment * Dike (mythology), ''Dikē'', the Greek goddess of moral justice * Dikes ...
in which liquid rock once flowed. The image is of Huo Hsing Vallis in Syrtis Major, as seen by THEMIS. Image: Dike near Huygens crater.jpg, Dike near the crater Huygens shows up as a narrow dark line running from upper left to lower right, as seen by THEMIS. Image: ESP 020676dike.jpg, Dikes as seen by HiRISE under the HiWish program. An image in the Nilosyrtis region, in Casius quadrangle. Image:WestSpanishPeakCO.jpg, Dikes near Spanish Peaks, Colorado. Dikes like these are common on Mars.
Large areas of Mars contain troughs, called fossa, which are classified as
graben In geology, a graben () is a depressed block of the crust of a planet or moon, bordered by parallel normal faults. Etymology ''Graben'' is a loan word from German, meaning 'ditch' or 'trench'. The word was first used in the geologic conte ...
s by geologists. They stretch thousands of miles out from volcanoes. It is believed that dikes helped with the formation of grabens. Many, maybe most, of the grabens had dikes under them. One would expect dikes and other igneous intrusions on Mars because geologists believe that the amount of liquid rock that moved under the ground is more than what we see on the top in the form of volcanoes and lava flows. On Earth, vast volcanic landscapes are called
large igneous province A large igneous province (LIP) is an extremely large accumulation of igneous rocks, including intrusive (sills, dikes) and extrusive (lava flows, tephra deposits), arising when magma travels through the crust towards the surface. The formation ...
s (LIPs); such places are sources of nickel, copper,
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion i ...
, iron, platinum,
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself ...
, and
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
. Mars's
Tharsis Tharsis () is a vast volcanic plateau centered near the equator in the western hemisphere of Mars. The region is home to the largest volcanoes in the Solar System, including the three enormous shield volcanoes Arsia Mons, Pavonis Mons, and As ...
region, which contains a group of giant volcanoes, is considered to be a LIP. Image:Graben in Memnonia Fossae.JPG, Graben in the Memnonia Fossae, as seen by HiRISE. This graben is believed to be the result of magmatic dikes rather than regional tectonic stretching (scale bar is 1.0 km). Image: Cerberus Fossae with HiRISE.JPG, The Cerberus Fossae in the Elysium quadrangle, as seen by HiRISE


Heat from impacts

Besides heat generated by molten rock, Mars has had much heat produced when
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s impacted its surface making giant craters. The area around a large impact may take hundreds of thousands of years to cool. During that time, ice in the ground will melt, heat, dissolve minerals, then deposit them in cracks or faults that were produced with the impact. Studies on the earth have documented that cracks are produced and that secondary minerals veins are filled in the cracks.Grieve, R., V. Masaitis. 1994. The Economic Potential of Terrestrial Impact Craters. International Geology Review: 36, 105-151. Images from satellites orbiting Mars have detected cracks near impact craters. Areas of aqueous and low-grade thermal alteration have been found by the Opportunity Rover on the rim of
Endeavour crater Endeavour is an impact crater located in the Meridiani Planum extraterrestrial plain within the Margaritifer Sinus quadrangle (MC-19) region of the planet Mars. Endeavour is about in diameter. Using ''Mars Reconnaissance Orbiter'' data, phy ...
. These are found near joints and fractures that allowed deep fluid circulation which caused chemical and thermal alteration of the rocks. So, the area around martian craters may contain a variety of minerals that were produced as an indirect result of an impact. Heat from impacts results from several processes. Immediately after an impact, there is a rebound off the floor which causes hotter rocks to be uplifted to the surface. However, most of the heat comes from the kinetic energy that is produced during the impact. This enormous heat creates several useful products that may start forming early and then continue for some time. These are called "epigenetic deposits." Circulation of hot mineral-rich fluids in the fractures from the impact cause hydrothermalism. Important examples are the Cu-Ni
sulfides Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
at the Sudbury Igneous Complex in
Canada Canada is a country in North America. Its ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, covering over , making it the world's second-largest country by to ...
. For a number of years, these ores from the Sudbury area had a value of $2 billion each year. The Sudbury formation has provided us with ores of
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, and
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
. Strong evidence for hydrothermalism was reported by a team of researchers studying Auki Crater. This crater contains ridges that may have been produced after fractures formed with an impact. Using instruments on the
Mars Reconnaissance Orbiter ''Mars Reconnaissance Orbiter'' (MRO) is a spacecraft designed to study the geology and climate of Mars, provide reconnaissance of future landing sites, and relay data from surface missions back to Earth. It was launched on August 12, 2005, an ...
they found the minerals
Smectite A smectite (from ancient Greek ''σμηκτός'' smektos 'lubricated'; ''σμηκτρίς'' smektris 'walker's earth', 'fuller's earth'; rubbing earth; earth that has the property of cleaning) is a mineral mixtures of various swelling sheet sil ...
,
Silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
,
Zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
, Serpentine,
Carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate ...
, and Chlorite that are common in impact-induced hydrothermal systems on Earth. There is other evidence of post-impact hydrothermal systems on Mars from other scientists who studied other Martian craters. Aukicratercpx.jpg, Wide view of Auki Crater, as seen by CTX ESP 011458 1640auki.jpg, Close view of central portion of Auki Crater, as seen by HiRISE Arrow indicates ridges. Sand dunes are present near the top of the image. 11458 1640ridgesauki.jpg, Close view of ridges from previous HiRISE image Arrow indicates an "X" shaped ridge. 11458 1640ridgesauki2.jpg, Close view of the central section of Auki Crater showing ridges with arrow Image is an enlargement of a previous HiRISE image. The surface of Mars contains abundant evidence of a wetter climate in the past along with ice frozen in the ground today; therefore it is quite possible that hydrothermal systems could be set up from impact heat.
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
's
Mars Odyssey ''2001 Mars Odyssey'' is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectro ...
actually measured the distribution of ice from orbit with a
gamma ray spectrometer A gamma-ray spectrometer (GRS) is an instrument for measuring the distribution (or spectrum—see figure) of the intensity of gamma radiation versus the energy of each photon. The study and analysis of gamma-ray spectra for scientific and techni ...
. So, in the past, much water could have been available to circulate in cracks and deposit new minerals. This process, called
hydrothermal alteration Metasomatism (from the Greek μετά ''metá'' "change" and σῶμα ''sôma'' "body") is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical co ...
has been found in a meteorite from Mars. Research, published in February 2011, detailed the discovery of clay minerals, serpentine, and carbonate in the veins of a Nakhlite martian meteorite. The
Phoenix lander ''Phoenix'' was an uncrewed space probe that landed on the surface of Mars on May 25, 2008, and operated until November 2, 2008. ''Phoenix'' was operational on Mars for sols ( days). Its instruments were used to assess the local habitabilit ...
, whose rocket engine blast actually exposed a layer of ice, watched ice melt (the ice disappeared by sublimation). Because 30% of the roughly 180 impact craters on Earth contain minerals or oil and gas, it seems that the cratering promotes the development of natural resources Some of the ores produced from impact-related effects on Earth include ores of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
,
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
, and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
. It is estimated that the value of materials mined from impact structures is 5 billion dollars/year just for North America. Image: Hellas basin topo.jpg, Hellas Basin Area topography. This is one of the impacts that would have taken many thousands of years to cool. A lot of minerals could have been deposited while this area was cooling. Image: Argyre basin topo.jpg, Topography of the Argyre Basin, the major feature in the Argyre quadrangle. This large impact crater would have also taken many thousands of years to cool.


Direct evidence for useful materials

It has for some time been accepted by the scientific community that a group of
meteorites A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object ...
came from Mars. As such, they represent actual samples of the planet and have been analyzed on Earth by the best equipment available. In these meteorites, called SNCs, many important elements have been detected.
Magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
,
Aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
,
Titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion i ...
, Iron, and Chromium are relatively common in them. In addition,
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense soli ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
, nickel, copper, zinc, niobium,
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lead ...
, lanthanum, europium, tungsten, and gold have been found in trace amounts. It is quite possible that in some places these materials may be concentrated enough to be mined economically. The Mars landers Viking I, Viking II, Pathfinder,
Opportunity Rover ''Opportunity'', also known as MER-B (Mars Exploration Rover – B) or MER-1, is a robotic rover that was active on Mars from 2004 until 2018. ''Opportunity'' was operational on Mars for sols (). Launched on July 7, 2003, as part of NASA's ...
, and
Spirit Rover Spirit or spirits may refer to: Liquor and other volatile liquids * Spirits, a.k.a. liquor, distilled alcoholic drinks * Spirit or tincture, an extract of plant or animal material dissolved in ethanol * Volatile (especially flammable) liquids, ...
identified aluminium, iron,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
, and titanium in the Martian soil. Opportunity found small structures, named "blueberries" which were found to be rich in
hematite Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
, a major ore of iron. These blueberries could easily be gathered up and reduced to metallic iron that could be used to make steel. In addition, both Spirit and Opportunity Rovers found nickel-iron
meteorites A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object ...
sitting on the surface of Mars. These could also be used to produce
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
. In December 2011, Opportunity Rover discovered a vein of
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywa ...
sticking out of the soil. Tests confirmed that it contained calcium, sulfur, and water. The mineral gypsum is the best match for the data. It likely formed from mineral-rich water moving through a crack in the rock. The vein, called "Homestake," is in Mars' Meridiani plain. Homestake is in a zone where the sulfate-rich sedimentary bedrock of the plains meets older, volcanic bedrock exposed at the rim of
Endeavour crater Endeavour is an impact crater located in the Meridiani Planum extraterrestrial plain within the Margaritifer Sinus quadrangle (MC-19) region of the planet Mars. Endeavour is about in diameter. Using ''Mars Reconnaissance Orbiter'' data, phy ...
. Image:PIA07269-Mars Rover Opportunity-Iron Meteorite.jpg,
Heat Shield Rock Heat Shield Rock is a basketball-sized iron-nickel meteorite found on the Meridiani Planum plain of Mars by the Mars rover ''Opportunity'' in January 2005. Informally referred to as "Heat Shield Rock" by the Opportunity research team, the m ...
was the first meteorite ever identified on another planet. It is 93% iron.
Image:Mars Viking 22e169.png, Viking lander took this picture of the Martian surface and analyzed the soil. Dark sand dunes are common on the surface of Mars. Their dark tone is due to the volcanic rock called basalt. The basalt dunes are believed to contain the minerals
chromite Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can ...
,
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With ...
, and
ilmenite Ilmenite is a titanium-iron oxide mineral with the idealized formula . It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing ...
.Ruzicka, G. et al. 2001. Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars: implications for the origin of the Moon. Geochimica et Cosmochimica ACTA: 65. 979-997. Since the wind has gathered them together, they do not even have to be mined, merely scooped up.West, M. and J. Clarke. 2010. Potential martian mineral resources: Mechanisms and terrestrial analogs. Planetary and Space Science: 58. 574-582
ResearchGate
These minerals could supply future colonists with chromium, iron, and titanium. Image:Dark dunes in Noachis.JPG, Dark dunes (probably
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
) which form a dark spot in Noachis quadrangle. Picture from Mars Global Surveyor. Image: Dunes Wide View.jpg, Wide view of dunes in Noachis, as seen by
HiRISE High Resolution Imaging Science Experiment is a camera on board the '' Mars Reconnaissance Orbiter'' which has been orbiting and studying Mars since 2006. The 65 kg (143 lb), US$40 million instrument was built under the direction ...
Image: Close-up view of Dunes.jpg, Close-up View of dunes in the previous image, as seen by HiRISE. Note how sand barely covers some boulders.


Future detection for ores on Mars

Theoretically, ore resources exist on Mars. Moreover, sensitive equipment can predict where to look for them, such as around craters and near volcanic regions. As more images are gathered, more information will be gathered which will help to better map the locations of smaller structures, such as dikes, that indicate intrusive (under the surface) igneous activity. Later, flying uncrewed craft with gravity and magnetic measuring devices will be able to determine the exact locations of mineral deposits.


See also


References

{{Mars Mars Colonization of Mars