Orbital speed
   HOME

TheInfoList



OR:

In gravitationally bound systems, the orbital speed of an
astronomical body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical object, physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ...
or object (e.g.
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
,
moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
,
artificial satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scienti ...
,
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
, or
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
) is the
speed In kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a non-negative scalar quantity. Intro ...
at which it
orbit In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an ...
s around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weight function, weighted relative position (vector), position of the d ...
of the most massive body. The term can be used to refer to either the mean orbital speed (i.e. the average speed over an entire orbit) or its instantaneous speed at a particular point in its orbit. The maximum (instantaneous) orbital speed occurs at
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
(perigee, perihelion, etc.), while the minimum speed for objects in closed orbits occurs at apoapsis (apogee, aphelion, etc.). In ideal two-body systems, objects in open orbits continue to slow down forever as their distance to the barycenter increases. When a system approximates a two-body system, instantaneous orbital speed at a given point of the orbit can be computed from its distance to the central body and the object's
specific orbital energy In the gravitational two-body problem, the specific orbital energy \varepsilon (or specific ''vis-viva'' energy) of two orbiting bodies is the constant quotient of their mechanical energy (the sum of their mutual potential energy, \varepsilon ...
, sometimes called "total energy". Specific orbital energy is constant and independent of position.


Radial trajectories

In the following, it is assumed that the system is a two-body system and the orbiting object has a negligible mass compared to the larger (central) object. In real-world orbital mechanics, it is the system's barycenter, not the larger object, which is at the focus.
Specific orbital energy In the gravitational two-body problem, the specific orbital energy \varepsilon (or specific ''vis-viva'' energy) of two orbiting bodies is the constant quotient of their mechanical energy (the sum of their mutual potential energy, \varepsilon ...
, or total energy, is equal to ''E''k − ''E''p (the difference between kinetic energy and potential energy). The sign of the result may be positive, zero, or negative and the sign tells us something about the type of orbit: * If the
specific orbital energy In the gravitational two-body problem, the specific orbital energy \varepsilon (or specific ''vis-viva'' energy) of two orbiting bodies is the constant quotient of their mechanical energy (the sum of their mutual potential energy, \varepsilon ...
is positive the orbit is unbound, or open, and will follow a hyperbola with the larger body the focus of the hyperbola. Objects in open orbits do not return; once past periapsis their distance from the focus increases without bound. See radial hyperbolic trajectory * If the total energy is zero, (''E''k = ''E''p): the orbit is a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
with focus at the other body. See radial parabolic trajectory. Parabolic orbits are also open. * If the total energy is negative, : The orbit is bound, or closed. The motion will be on an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
with one focus at the other body. See radial elliptic trajectory, free-fall time. Planets have bound orbits around the Sun.


Transverse orbital speed

The transverse orbital speed is inversely proportional to the distance to the central body because of the law of conservation of
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, or equivalently,
Kepler Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of p ...
's second law. This states that as a body moves around its orbit during a fixed amount of time, the line from the barycenter to the body sweeps a constant area of the orbital plane, regardless of which part of its orbit the body traces during that period of time. This law implies that the body moves slower near its
apoapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
than near its
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
, because at the smaller distance along the arc it needs to move faster to cover the same area.


Mean orbital speed

For orbits with small
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
, the length of the orbit is close to that of a circular one, and the mean orbital speed can be approximated either from observations of the orbital period and the
semimajor axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
of its orbit, or from knowledge of the
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
es of the two bodies and the semimajor axis. :v \approx \approx \sqrt where is the orbital velocity, is the
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
of the
semimajor axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
, is the orbital period, and is the
standard gravitational parameter The standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of that body. For two bodies, the parameter may be expressed as , or as when one body is much larger than the ...
. This is an approximation that only holds true when the orbiting body is of considerably lesser mass than the central one, and eccentricity is close to zero. When one of the bodies is not of considerably lesser mass see: Gravitational two-body problem So, when one of the masses is almost negligible compared to the other mass, as the case for
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
and Sun, one can approximate the orbit velocity v_o as: :v_o \approx \sqrt or: :v_o \approx \frac Where is the (greater) mass around which this negligible mass or body is orbiting, and is the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
at a distance from the center of the primary body equal to the radius of the orbit. For an object in an eccentric orbit orbiting a much larger body, the length of the orbit decreases with
orbital eccentricity In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values be ...
, and is an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
. This can be used to obtain a more accurate estimate of the average orbital speed: : v_o = \frac\left -\frace^2-\frace^4 -\frace^6 -\frace^8 - \cdots \right The mean orbital speed decreases with eccentricity.


Instantaneous orbital speed

For the instantaneous orbital speed of a body at any given point in its trajectory, both the mean distance and the instantaneous distance are taken into account: : v = \sqrt where is the
standard gravitational parameter The standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of that body. For two bodies, the parameter may be expressed as , or as when one body is much larger than the ...
of the orbited body, is the distance at which the speed is to be calculated, and is the length of the semi-major axis of the elliptical orbit. This expression is called the vis-viva equation. For the Earth at perihelion, the value is: : \sqrt \approx 30,300 ~\text/\text which is slightly faster than Earth's average orbital speed of , as expected from Kepler's 2nd Law.


Planets

The closer an object is to the Sun the faster it needs to move to maintain the orbit. Objects move fastest at perihelion (closest approach to the Sun) and slowest at aphelion (furthest distance from the Sun). Since planets in the Solar System are in nearly circular orbits their individual orbital velocities do not vary much. Being closest to the Sun and having the most eccentric orbit, Mercury's orbital speed varies from about 59 km/s at perihelion to 39 km/s at aphelion.
Halley's Comet Halley's Comet is the only known List of periodic comets, short-period comet that is consistently visible to the naked eye from Earth, appearing every 72–80 years, though with the majority of recorded apparitions (25 of 30) occurring after ...
on an
eccentric orbit In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless quantity, dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circu ...
that reaches beyond
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
will be moving 54.6 km/s when from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth's orbit), and roughly 1 km/s at aphelion from the Sun., where ''r'' is the distance from the Sun, and ''a'' is the major semi-axis. Objects passing Earth's orbit going faster than 42.1 km/s have achieved
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
and will be ejected from the Solar System if not slowed down by a gravitational interaction with a planet.


See also

*
Escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
* Delta-v budget * Hohmann transfer orbit * Bi-elliptic transfer


References

{{Orbits Orbits hu:Kozmikus sebességek#Szökési sebességek