Orbital speed
   HOME

TheInfoList



OR:

In gravitationally bound systems, the orbital speed of an
astronomical body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often u ...
or object (e.g.
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
,
moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
,
artificial satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisoto ...
,
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, ...
, or
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
) is the
speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quant ...
at which it
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
s around either the barycenter or, if one body is much more massive than the other bodies of the system combined, its speed relative to the
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
of the most massive body. The term can be used to refer to either the mean orbital speed (i.e. the average speed over an entire orbit) or its instantaneous speed at a particular point in its orbit. The maximum (instantaneous) orbital speed occurs at periapsis (perigee, perihelion, etc.), while the minimum speed for objects in closed orbits occurs at apoapsis (apogee, aphelion, etc.). In ideal two-body systems, objects in open orbits continue to slow down forever as their distance to the barycenter increases. When a system approximates a two-body system, instantaneous orbital speed at a given point of the orbit can be computed from its distance to the central body and the object's specific orbital energy, sometimes called "total energy". Specific orbital energy is constant and independent of position.


Radial trajectories

In the following, it is thought that the system is a two-body system and the orbiting object has a negligible mass compared to the larger (central) object. In real-world orbital mechanics, it is the system's barycenter, not the larger object, which is at the focus. Specific orbital energy, or total energy, is equal to ''E''k − ''E''p. (kinetic energy − potential energy). The sign of the result may be positive, zero, or negative and the sign tells us something about the type of orbit: * If the specific orbital energy is positive the orbit is unbound, or open, and will follow a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
with the larger body the focus of the hyperbola. Objects in open orbits do not return; once past periapsis their distance from the focus increases without bound. See
radial hyperbolic trajectory In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fa ...
* If the total energy is zero, (''E''k = ''E''p): the orbit is a
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
with focus at the other body. See radial parabolic trajectory. Parabolic orbits are also open. * If the total energy is negative, ''E''k − ''E''p < 0: The orbit is bound, or closed. The motion will be on an
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
with one focus at the other body. See
radial elliptic trajectory In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, i ...
, free-fall time. Planets have bound orbits around the Sun.


Transverse orbital speed

The transverse orbital speed is inversely proportional to the distance to the central body because of the law of conservation of
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, or equivalently,
Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws o ...
's second law. This states that as a body moves around its orbit during a fixed amount of time, the line from the barycenter to the body sweeps a constant area of the orbital plane, regardless of which part of its orbit the body traces during that period of time. This law implies that the body moves slower near its apoapsis than near its periapsis, because at the smaller distance along the arc it needs to move faster to cover the same area.


Mean orbital speed

For orbits with small eccentricity, the length of the orbit is close to that of a circular one, and the mean orbital speed can be approximated either from observations of the
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
and the
semimajor axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lo ...
of its orbit, or from knowledge of the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
es of the two bodies and the semimajor axis. :v \approx \approx \sqrt where is the orbital velocity, is the
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Inte ...
of the
semimajor axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lo ...
, is the orbital period, and is the
standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM whe ...
. This is an approximation that only holds true when the orbiting body is of considerably lesser mass than the central one, and eccentricity is close to zero. When one of the bodies is not of considerably lesser mass see: Gravitational two-body problem So, when one of the masses is almost negligible compared to the other mass, as the case for
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
and Sun, one can approximate the orbit velocity v_o as: :v_o \approx \sqrt or assuming equal to the radius of the orbit :v_o \approx \frac Where is the (greater) mass around which this negligible mass or body is orbiting, and is the escape velocity. For an object in an eccentric orbit orbiting a much larger body, the length of the orbit decreases with
orbital eccentricity In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values bet ...
, and is an
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
. This can be used to obtain a more accurate estimate of the average orbital speed: : v_o = \frac\left -\frace^2-\frace^4 -\frace^6 -\frace^8 - \cdots \right The mean orbital speed decreases with eccentricity.


Instantaneous orbital speed

For the instantaneous orbital speed of a body at any given point in its trajectory, both the mean distance and the instantaneous distance are taken into account: : v = \sqrt where is the
standard gravitational parameter In celestial mechanics, the standard gravitational parameter ''μ'' of a celestial body is the product of the gravitational constant ''G'' and the mass ''M'' of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM whe ...
of the orbited body, is the distance at which the speed is to be calculated, and is the length of the semi-major axis of the elliptical orbit. This expression is called the vis-viva equation. For the Earth at perihelion, the value is: : \sqrt \approx 30,300 ~\text/\text which is slightly faster than Earth's average orbital speed of , as expected from Kepler's 2nd Law.


Planets

The closer an object is to the Sun the faster it needs to move to maintain the orbit. Objects move fastest at perihelion (closest approach to the Sun) and slowest at aphelion (furthest distance from the Sun). Since planets in the Solar System are in nearly circular orbits their individual orbital velocities do not vary much. Being closest to the Sun and having the most eccentric orbit, Mercury's orbital speed varies from about 59 km/s at perihelion to 39 km/s at aphelion. Halley's Comet on an
eccentric orbit In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values betwee ...
that reaches beyond
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
will be moving 54.6 km/s when from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth's orbit), and roughly 1 km/s at aphelion from the Sun., where ''r'' is the distance from the Sun, and ''a'' is the major semi-axis. Objects passing Earth's orbit going faster than 42.1 km/s have achieved escape velocity and will be ejected from the Solar System if not slowed down by a gravitational interaction with a planet.


See also

* Escape velocity * Delta-v budget * Hohmann transfer orbit * Bi-elliptic transfer


References

{{Orbits Orbits hu:Kozmikus sebességek#Szökési sebességek