Optical rectification
   HOME

TheInfoList



OR:

Electro-optic rectification (EOR), also referred to as optical rectification, is a non-linear optical process that consists of the generation of a quasi-DC polarization in a non-linear medium at the passage of an intense optical beam. For typical intensities, optical rectification is a second-order phenomenon which is based on the inverse process of the electro-optic effect. It was reported for the first time in 1962, when radiation from a
ruby laser A ruby laser is a solid-state laser that uses a synthetic ruby crystal as its gain medium. The first working laser was a ruby laser made by Theodore H. "Ted" Maiman at Hughes Research Laboratories on May 16, 1960. Ruby lasers produce pulses of ...
was transmitted through
potassium dihydrogen phosphate Monopotassium phosphate (MKP) (also, potassium dihydrogenphosphate, KDP, or monobasic potassium phosphate) is the inorganic compound with the formula KH2PO4. Together with dipotassium phosphate (K2HPO4.(H2O)x) it is often used as a fertilizer, f ...
(KDP) and
potassium dideuterium phosphate Deuterated potassium dihydrogen phosphate (KD2PO4) or DKDP single crystals are widely used in non-linear optics as the second, third and fourth harmonic generators for Nd:YAG and Nd:YLF lasers. They are also found in electro-optical applications ...
(KDdP) crystals.


Explanation

Optical rectification can be intuitively explained in terms of the symmetry properties of the non-linear medium: in the presence of a preferred internal direction, the polarization will not reverse its sign at the same time as the driving field. If the latter is represented by a sinusoidal wave, then an average DC polarization will be generated. Optical rectification is analogous to the electric rectification effect produced by
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
s, wherein an AC signal can be converted ("rectified") to DC. However, it is ''not'' the same thing. A diode can turn a sinusoidal electric field into a DC current, while optical rectification can turn a sinusoidal electric field into a DC polarization, but not a DC current. On the other hand, a ''changing'' polarization is a kind of current. Therefore, if the incident light is getting more and more intense, optical rectification causes a DC current, while if the light is getting less and less intense, optical rectification causes a DC current in the opposite direction. But again, if the light intensity is constant, optical rectification cannot cause a DC current. When the applied electric field is delivered by a
femtosecond A femtosecond is a unit of time in the International System of Units (SI) equal to 10 or of a second; that is, one quadrillionth, or one millionth of one billionth, of a second. For context, a femtosecond is to a second as a second is to about 31 ...
- pulse-width
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
, the spectral bandwidth associated with such short pulses is very large. The mixing of different frequency components produces a beating polarization, which results in the emission of electromagnetic waves in the terahertz region. The EOR effect is somewhat similar to a classical electrodynamic emission of radiation by an accelerating/decelerating charge, except that here the charges are in a bound dipole form and the THz generation depends on the second order susceptibility of the nonlinear optical medium. A popular material for generating radiation in the 0.5–3 THz range (0.1 mm wavelength) is zinc telluride. Optical rectification also occurs on
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
surfaces by similar effect as
surface second harmonic generation Surface second harmonic generation is a method for probing interfaces in atomic and molecular systems. In second harmonic generation (SHG), the light frequency is doubled, essentially converting two photons of the original beam of energy ''E'' into ...
. The effect is however influenced e. g. by nonequilibrium electron excitation and generally it manifests in a more complicated way. Similar to other nonlinear optical processes, optical rectification is also reported to become enhanced when surface plasmons are excited on a metal surface.


Applications

Together with carrier acceleration in semiconductors and polymers, optical rectification is one of the main mechanisms for the generation of terahertz radiation using lasers.Tonouchi, M, "Cutting-edge terahertz technology," ''Nature Photonics'' 1, 97 (2007), {{doi, 10.1038/nphoton.2007.3 This is different from other processes of terahertz generation such as polaritonics where a polar lattice vibration is thought to generate the
terahertz radiation Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of fr ...
.


See also

* Terahertz time-domain spectroscopy


References

Terahertz technology Nonlinear optics