Nucleic acid quaternary structure
   HOME

TheInfoList



OR:

Nucleic acid quaternary structure refers to the interactions between separate nucleic acid molecules, or between nucleic acid molecules and proteins. The concept is analogous to
protein quaternary structure Protein quaternary structure is the fourth (and highest) classification level of protein structure. Protein quaternary structure refers to the structure of proteins which are themselves composed of two or more smaller protein chains (also refe ...
, but as the analogy is not perfect, the term is used to refer to a number of different concepts in nucleic acids and is less commonly encountered. Similarly other biomolecules such as
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
, nucleic acids have four levels of structural arrangement:
primary Primary or primaries may refer to: Arts, entertainment, and media Music Groups and labels * Primary (band), from Australia * Primary (musician), hip hop musician and record producer from South Korea * Primary Music, Israeli record label Works * ...
,
secondary Secondary may refer to: Science and nature * Secondary emission, of particles ** Secondary electrons, electrons generated as ionization products * The secondary winding, or the electrical or electronic circuit connected to the secondary winding i ...
, tertiary, and quaternary structure. Primary structure is the linear sequence of nucleotides, secondary structure involves small local folding motifs, and tertiary structure is the 3D folded shape of nucleic acid molecule. In general, quaternary structure refers to 3D interactions between multiple subunits. In the case of nucleic acids, quaternary structure refers to interactions between multiple nucleic acid molecules or between nucleic acids and proteins. Nucleic acid quaternary structure is important for understanding DNA,
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
, and
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
because quaternary structure can impact function. For example, when DNA is packed into chromatin, therefore exhibiting a type of quaternary structure, gene transcription will be inhibited.


DNA

DNA quaternary structure is used to refer to the binding of DNA to histones to form nucleosomes, and then their organisation into higher-order chromatin fibres. The quaternary structure of DNA strongly affects how accessible the DNA sequence is to the transcription machinery for expression of genes. DNA quaternary structure varies over time, as regions of DNA are condensed or exposed for transcription. The term has also been used to describe the hierarchical assembly of artificial nucleic acid building blocks used in DNA nanotechnology. The quaternary structure of DNA refers to the formation of chromatin. Because the human genome is so large, DNA must be condensed into chromatin, which consists of repeating units known as nucleosomes. Nucleosomes contain DNA and proteins called histones. The nucleosome core usually contains around 146 DNA base pairs wrapped around a histone octamer.  The histone octamer is made of eight total histone proteins, two of each of the following proteins: H2A, H2B, H3, and H4.  Histones are primarily responsible for shaping the nucleosomes, therefore drastically contributing to chromatin structure.  Histone proteins are positively-charged and therefore can interact with the negatively-charged phosphate backbone of DNA.  One portion of core histone proteins, known as histone tail domains, are extremely important for keeping the nucleosome tightly wrapped and giving the nucleosome secondary and tertiary structure. This is because the histone tail domains are involved in interactions between nucleosomes. The linker histone, or H1 protein, is also involved maintaining nucleosome structure. The H1 protein has the special role of ensuring that DNA stays tightly wound. Modifications to histone proteins and their DNA are classified as quaternary structure. Condensed chromatin,
heterochromatin Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continue between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role ...
, prevents transcription of genes. In other words, transcription factors cannot access wound DNA-  This is in contrast to euchromatin, which is decondensed, and therefore, readily accessible to the transcriptional machinery.
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts t ...
to nucleotides influences chromatin quaternary structure. Highly methylated DNA nucleotides are more likely found within heterochromatin whereas unmethylated DNA nucleotides are common in euchromatin. Furthermore, post-translational modifications can be made to the core histone tail domains, which lead to changes in DNA quaternary structure and therefore gene expression.
Enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
, known as epigenetic writers and epigenetic erasers, catalyze either the addition or removal of several modifications to the histone tail domains. For instance, an enzyme writer can methylate Lysine-9 of the H3 core protein, which is found in the H3 histone tail domain. This can lead to gene repression as the chromatin gets remodeled and resembles heterochromatin. However, dozens of modifications can be made to histone tail domains. Therefore, it is the sum of all those modifications that determine whether chromatin will resemble heterochromatin or euchromatin.


RNA

RNA is subdivided into many categories, including messenger RNA ( mRNA), ribosomal RNA ( rRNA), transfer RNA ( tRNA), long non-coding RNA ( lncRNA), and several other small functional RNAs. Whereas many proteins have quaternary structure, the majority of RNA molecules have only primary through tertiary structure and function as individual molecules rather than as multi-subunit structures. Some types of RNA show clear quaternary structure that is essential for function, whereas other types of RNA function as single molecules and do not associate with other molecules to form quaternary structures. Symmetrical complexes of RNA molecules are extremely uncommon compared to protein oligomers. One example of an RNA homodimer is the VS ribozyme from Neurospora, with its two active sites consisting of nucleotides from both monomers. The best known example of RNA forming quaternary structures with proteins is the
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
, which consists of multiple rRNAs, supported by rProteins. Similar RNA-Protein complexes are also found in the spliceosome.


Riboswitches

Riboswitches In molecular biology, a riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in Translation (biology), production of the proteins encoded by the mRNA. Thus, an mRNA that contains a ribo ...
are a type of mRNA structure that help regulate gene expression and often bind a diverse set of
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
. Riboswitches determine how gene expression responds to varying concentrations of small molecules in the cell This motif has been observed in flavin mononucleotide (FMN),
cyclic di-AMP Cyclic di-AMP (also called c-di-AMP and c-di-adenosine monophosphate) is a second messenger used in signal transduction in bacteria and archaea. It is present in many Gram-positive bacteria, some Gram-negative species, and archaea of the phylum eu ...
(c-di-AMP), and glycine. Riboswitches are said to show pseudoquaternary structure. Several structurally similar regions of a single RNA molecule fold together symmetrically. Because this structure arises from a single molecule and not from multiple separate molecules, it cannot be referred to as true quaternary structure. Depending on where a riboswitch binds and how it is arranged, it can suppress or allow a gene to be expressed Symmetry is an important part of biomolecular three-dimensional configurations. Many proteins are sy.mmetrical on the level of quaternary structure, but RNAs rarely have symmetrical quaternary structures. Even though tertiary structure is variant and essential for all types of RNAs, RNA oligimerization is relatively rare.


rRNA

Ribosomes Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to f ...
, the
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
for
protein translation In molecular biology and genetics, translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum synthesize proteins after the process of transcription of DNA to RNA in the cell's nucleus. The entire process is ...
takes place, are made out of rRNA and proteins. Ribosomes may be the best and most abundant example of nucleic acid quaternary structure. The specifics of ribosome structure varies among different kingdoms and species, but all ribosomes are made of a large subunit and a small unit. Different classes of organisms have ribosomal subunits of different characteristic sizes. The three dimensional association of ribosomal subunits is essential for ribosomal function. The small subunit binds first to mRNA and then the large subunit is recruited. In order for a
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
to be formed, proper association of the mRNA and both of the ribosome subunits must occur. At left, the secondary structure of rRNA in the peptidyltransferase center of the ribosome in yeast. The peptidyltransferase center is where the formation of the peptide bond is catalyzed during translation. At right, the three-dimensional structure of the peptidyltransferase center. The helical rRNA is associated with globular ribosomal proteins. Incoming codons arrive at the A site and move to the P site, where peptide bond formation is catalyzed. One specific three dimensional structure that is commonly observed in rRNA is the A-minor motif. There are four types of A-minor motifs, all of which include many unpaired adenosines. These lone adenosines extend from outward and allow RNA molecules to bind other nucleic acids in the
minor groove Minor may refer to: * Minor (law), a person under the age of certain legal activities. ** A person who has not reached the age of majority * Academic minor, a secondary field of study in undergraduate education Music theory * Minor chord ** Bar ...
.


tRNA

While consensus secondary and tertiary structures have been observed in tRNAs, there has not been evidence of tRNAs creating a quaternary structure thus far. Of note, it has been observed through high resolution imaging that tRNA interacts with the quaternary structure of bacterial 70S ribosome and other proteins.


Other small RNAs


pRNA

Bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacteri ...
φ29 prohead RNA ( pRNA) has the ability to form quaternary structure. pRNA is able to form into a quaternary structure by oligimerizing to create the capsid that encloses the genomic DNA of bacteriophage. Several molecules of pRNA surround the genome, and through stacking interactions and base pairing the pRNAs enclose and the protect the DNA.
Crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
studies show that pRNA forms tetrameric rings, although cryo-EM structures suggest pRNA may also form pentameric rings.


Kissing loop Motif

In this model, based on Dengue Virus Methyltransferase, four monomers of methyltransferase surround two octamers of RNA. The nucleic acid associations demonstrate the kissing loop motif. The three-dimensional folding motif known as the kissing loop. In this diagram, two kissing loop models are overlaid to show structural similarities. The white backbone and pink bases are from ''B. subtilis'', and the gray backbone and blue bases are from ''V. vulnificus''. The kissing loop motif has been observed in
retroviruses A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase e ...
and RNAs that are encoded by
plasmid A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; how ...
s. The determination of the number of kissing loops to form the capsid varies between 5 and 6. Five kissing loops have been shown to have a stronger stability due to the particular symmetry that the 5 kissing loop structure provides.


Small nuclear RNA

Small nuclear RNA ( snRNA) combines with proteins to form the spliceosome in the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
. The spliceosome is responsible for sensing and cutting introns out of pre-mRNA, which is one of the first steps of
mRNA processing Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, func ...
. The spliceosome is a large macromolecularcomplex. Quaternary structure allows snRNA to detect mRNA sequences that need to be excised.


References

{{Biomolecular structure Nucleic acids