Nike laser
   HOME

TheInfoList



OR:

The Nike laser at the
United States Naval Research Laboratory The United States Naval Research Laboratory (NRL) is the corporate research laboratory for the United States Navy and the United States Marine Corps. It was founded in 1923 and conducts basic scientific research, applied research, technological ...
in Washington, DC is a 56-beam, 4–5 kJ per pulse
electron beam Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to el ...
pumped krypton fluoride
excimer laser An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and microm ...
which operates in the ultraviolet at 248 nm with pulsewidths of a few nanoseconds. Nike was completed in the late 1980s and is used for investigations into
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
. By using a KrF laser with induced spatial incoherence (ISI) optical smoothing, the modulations in the laser focal profile (beam intensity anisotropy) are only 1% in one beam and < 0.3% with a 44-beam overlap. This feature is especially important for minimizing the seeding of Rayleigh-Taylor instabilities in the imploding fusion target capsule plasma.


Background

In a gas-based laser, the entire gas molecule changes energy levels to release light. This is different from lasers that rely on electrons inside a given atom to change energy levels. The advantage of gas-based lasers are that with no solid medium, the hardware inside the beamline does not heat up. This allows excimer lasers to fire at high repetition rates. The other advantage is that this beam does not pass through a solid glass which distorts the beam, requiring smoothing once created. In 2013, the Electra laser was able to demonstrate over 90,000 shots in 1o hours using KRF gas. Krypton fluoride lasers were studied more aggressively for fusion energy between the late 1980s into the middle of the 1990s; below is a list institutions that had research programs: * Rutherford Appleton Laboratory * Japan's Electrotechnical Laboratory * China Institute for Atomic Energy * Aurora KrF Laser at Los Alamos Coggeshall, S. V., et al. "AURORA: THE LOS ALAMOS KrF LASER FUSION SYSTEM." Fusion Technology 1990. Elsevier, 1991. 228-232.


Design

The NIKE laser system starts with a
Marx generator A Marx generator is an electrical circuit first described by Erwin Otto Marx in 1924. Its purpose is to generate a high- voltage pulse from a low-voltage DC supply. Marx generators are used in high-energy physics experiments, as well as to simul ...
that forms a large voltage pulse. This is applied to a solid state (or magnetic) switch that transfers that energy into a water-filled transmission line. This transmission line is a big metal pipe filled with water or oil that contains the current. The pipe includes pressure release valves in case there is a short/vaporization event inside the line. This current is passed to a plasma-based laser switch. A laser beam passes across the plasma switch, which induces streams of electrons to strike an emitter plate that pumps the energy into the KRF or ARF gas.


See also

* List of laser types


References


External links


Nike KrF Laser Facility
at navy.mil Inertial confinement fusion research lasers {{plasma-stub