Neutron star
   HOME

TheInfoList



OR:

A neutron star is the collapsed core of a massive supergiant star, which had a total
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
of between 10 and 25 solar masses, possibly more if the star was especially
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
-rich. Except for black holes and some
hypothetical A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous obser ...
objects (e.g.
white hole In general relativity, a white hole is a hypothetical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black ho ...
s, quark stars, and
strange star A strange star is a hypothetical astronomical object, a quark star made of strange quark matter. Strange stars might exist without regard to the Bodmer–Witten assumption of stability at near-zero temperatures and pressures, as strange quark ma ...
s), neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of and a mass of about 1.4 solar masses. They result from the
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
. Once formed, they no longer actively generate heat, and cool over time; however, they may still evolve further through collision or
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
. Most of the basic models for these objects imply that neutron stars are composed almost entirely of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s (subatomic particles with no net electrical charge and with slightly larger mass than protons); the electrons and protons present in normal matter combine to produce neutrons at the conditions in a neutron star. Neutron stars are partially supported against further collapse by neutron degeneracy pressure, a phenomenon described by the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
, just as white dwarfs are supported against collapse by electron degeneracy pressure. However, neutron degeneracy pressure is not by itself sufficient to hold up an object beyond 0.7 and repulsive nuclear forces play a larger role in supporting more massive neutron stars. If the remnant star has a
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
exceeding the Tolman–Oppenheimer–Volkoff limit of around 2 solar masses, the combination of degeneracy pressure and nuclear forces is insufficient to support the neutron star and it continues collapsing to form a black hole. The most massive neutron star detected so far, PSR J0952–0607, is estimated to be solar masses. Neutron stars that can be observed are very hot and typically have a surface temperature of around .A neutron star's density increases as its mass increases, and its radius decreases non-linearly. (archived image
NASA mass radius graph
A newer page is here: (specifically the imag

)
Neutron star material is remarkably Density, dense: a normal-sized matchbox containing neutron-star material would have a weight of approximately 3 billion tonnes, the same weight as a 0.5 cubic kilometre chunk of the Earth (a cube with edges of about 800 metres) from Earth's surface. Their magnetic fields are between 108 and 1015 (100 million and 1 quadrillion) times stronger than Earth's magnetic field. The gravitational field at the neutron star's surface is about (200 billion) times that of Earth's gravitational field. As the star's core collapses, its rotation rate increases as a result of
conservation of angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
, and newly formed neutron stars hence rotate at up to several hundred times per second. Some neutron stars emit beams of electromagnetic radiation that make them detectable as pulsars. Indeed, the discovery of pulsars by
Jocelyn Bell Burnell Dame Susan Jocelyn Bell Burnell (; Bell; born 15 July 1943) is an astrophysicist from Northern Ireland who, as a postgraduate student, discovered the first radio pulsars in 1967. The discovery eventually earned the Nobel Prize in Physics in ...
and Antony Hewish in 1967 was the first observational suggestion that neutron stars exist. The radiation from pulsars is thought to be primarily emitted from regions near their magnetic poles. If the magnetic poles do not coincide with the rotational axis of the neutron star, the emission beam will sweep the sky, and when seen from a distance, if the observer is somewhere in the path of the beam, it will appear as pulses of radiation coming from a fixed point in space (the so-called "lighthouse effect"). The fastest-spinning neutron star known is
PSR J1748-2446ad PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portugal) ( ...
, rotating at a rate of 716 times a second or 43,000
revolutions per minute Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or with the notation min−1) is a unit of rotational speed or rotational frequency for rotating machines. Standards ISO 80000-3:2019 defines a unit of rotation as the dimensio ...
, giving a linear speed at the surface on the order of (i.e., nearly a quarter the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
). There are thought to be around one billion neutron stars in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, and at a minimum several hundred million, a figure obtained by estimating the number of stars that have undergone supernova explosions. However, most are old and cold and radiate very little; most neutron stars that have been detected occur only in certain situations in which they do radiate, such as if they are a pulsar or part of a binary system. Slow-rotating and non-accreting neutron stars are almost undetectable; however, since the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
detection of RX J1856.5−3754 in the 1990s, a few nearby neutron stars that appear to emit only thermal radiation have been detected. Soft gamma repeaters are conjectured to be a type of neutron star with very strong magnetic fields, known as magnetars, or alternatively, neutron stars with fossil disks around them. Neutron stars in binary systems can undergo
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
which typically makes the system bright in
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s while the material falling onto the neutron star can form hotspots that rotate in and out of view in identified X-ray pulsar systems. Additionally, such accretion can "recycle" old pulsars and potentially cause them to gain mass and spin-up to very fast rotation rates, forming the so-called millisecond pulsars. These binary systems will continue to evolve, and eventually the companions can become compact objects such as white dwarfs or neutron stars themselves, though other possibilities include a complete destruction of the companion through
ablation Ablation ( la, ablatio – removal) is removal or destruction of something from an object by vaporization, chipping, erosive processes or by other means. Examples of ablative materials are described below, and include spacecraft material for ...
or merger. The merger of binary neutron stars may be the source of short-duration gamma-ray bursts and are likely strong sources of gravitational waves. In 2017, a direct detection (
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
) of the gravitational waves from such an event was observed, and gravitational waves have also been indirectly observed in a system where two neutron stars orbit each other.


Formation

Any
main-sequence In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar ...
star with an initial mass of above 8 times the mass of the sun () has the potential to produce a neutron star. As the star evolves away from the main sequence, subsequent nuclear burning produces an iron-rich core. When all nuclear fuel in the core has been exhausted, the core must be supported by degeneracy pressure alone. Further deposits of mass from shell burning cause the core to exceed the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compar ...
. Electron-degeneracy pressure is overcome and the core collapses further, sending temperatures soaring to over . At these temperatures, photodisintegration (the breaking up of iron nuclei into
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
s by high-energy gamma rays) occurs. As the temperature climbs even higher, electrons and protons combine to form neutrons via
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. ...
, releasing a flood of neutrinos. When densities reach nuclear density of , a combination of strong force repulsion and neutron degeneracy pressure halts the contraction. The infalling outer envelope of the star is halted and flung outwards by a flux of neutrinos produced in the creation of the neutrons, becoming a supernova. The remnant left is a neutron star. If the remnant has a mass greater than about , it collapses further to become a black hole. As the core of a massive star is compressed during a
Type II supernova A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo this ...
or a Type Ib or Type Ic
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
, and collapses into a neutron star, it retains most of its
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
. But, because it has only a tiny fraction of its parent's radius (and therefore its moment of inertia is sharply reduced), a neutron star is formed with very high rotation speed, and then over a very long period it slows. Neutron stars are known that have rotation periods from about 1.4 ms to 30 s. The neutron star's density also gives it very high surface gravity, with typical values ranging from 1012 to 1013 m/s2 (more than 1011 times that of
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
). One measure of such immense gravity is the fact that neutron stars have an escape velocity of over half the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit fo ...
. The neutron star's gravity accelerates infalling matter to tremendous speed, and tidal forces near the surface can cause spaghettification. The force of its impact would likely destroy the object's component atoms, rendering all the matter identical, in most respects, to the rest of the neutron star.


Properties


Mass and temperature

A neutron star has a mass of at least 1.1  solar masses (). The upper limit of mass for a neutron star is called the Tolman–Oppenheimer–Volkoff limit and is generally held to be around , but a recent estimate puts the upper limit at . The maximum observed mass of neutron stars is about for PSR J0740+6620 discovered in September, 2019. Compact stars below the
Chandrasekhar limit The Chandrasekhar limit () is the maximum mass of a stable white dwarf star. The currently accepted value of the Chandrasekhar limit is about (). White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compar ...
of are generally white dwarfs whereas compact stars with a mass between and are expected to be neutron stars, but there is an interval of a few tenths of a solar mass where the masses of low-mass neutron stars and high-mass white dwarfs can overlap. It is thought that beyond the stellar remnant will overcome the strong force repulsion and neutron degeneracy pressure so that gravitational collapse will occur to produce a black hole, but the smallest observed mass of a
stellar black hole A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a ...
is about . Between and , hypothetical intermediate-mass stars such as quark stars and electroweak stars have been proposed, but none have been shown to exist. The temperature inside a newly formed neutron star is from around 1011 to 1012 
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
. However, the huge number of neutrinos it emits carry away so much energy that the temperature of an isolated neutron star falls within a few years to around 106 kelvin. At this lower temperature, most of the light generated by a neutron star is in X-rays. Some researchers have proposed a neutron star classification system using
Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, ...
(not to be confused with the Yerkes luminosity classes for non-degenerate stars) to sort neutron stars by their mass and cooling rates: type I for neutron stars with low mass and cooling rates, type II for neutron stars with higher mass and cooling rates, and a proposed type III for neutron stars with even higher mass, approaching , and with higher cooling rates and possibly candidates for
exotic star An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Exotic stars incl ...
s.


Density and pressure

Neutron stars have overall densities of to ( to times the density of the Sun), derives from mass / volume of star of radius 12 km; derives from mass per volume of star radius 11.9 km which is comparable to the approximate density of an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
of . The neutron star's density varies from about in the crust—increasing with depth—to about or (denser than an atomic nucleus) deeper inside. A neutron star is so dense that one teaspoon (5
milliliter The litre (international spelling) or liter (American English spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metre (m3). ...
s) of its material would have a mass over , about 900 times the mass of the
Great Pyramid of Giza The Great Pyramid of Giza is the biggest Egyptian pyramid and the tomb of Fourth Dynasty pharaoh Khufu. Built in the early 26th century BC during a period of around 27 years, the pyramid is the oldest of the Seven Wonders of the Ancient Worl ...
. In the enormous gravitational field of a neutron star, that teaspoon of material would
weigh In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quan ...
, which is 15 times what the Moon would weigh if it were placed on the surface of the Earth.The average density of material in a neutron star of radius 10 km is . Therefore, 5 ml of such material is , or 5 500 000 000
metric ton The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton (United States ...
s. This is about 15 times the total mass of the human world population. Alternatively, 5 ml from a neutron star of radius 20 km radius (average density ) has a mass of about 400 million metric tons, or about the mass of all humans. The gravitational field is ca. ''g'' or ca. N/kg. Moon weight is calculated at 1''g''.
The entire mass of the Earth at neutron star density would fit into a sphere of 305 m in diameter (the size of the Arecibo Telescope). The pressure increases from to from the inner crust to the center. The
equation of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or intern ...
of matter at such high densities is not precisely known because of the theoretical difficulties associated with extrapolating the likely behavior of quantum chromodynamics,
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
, and superfluidity of matter in such states. The problem is exacerbated by the empirical difficulties of observing the characteristics of any object that is hundreds of parsecs away, or farther. A neutron star has some of the properties of an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, including density (within an order of magnitude) and being composed of nucleons. In popular scientific writing, neutron stars are therefore sometimes described as "giant nuclei". However, in other respects, neutron stars and atomic nuclei are quite different. A nucleus is held together by the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
, whereas a neutron star is held together by
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. The density of a nucleus is uniform, while neutron stars are predicted to consist of multiple layers with varying compositions and densities.


Magnetic field

The magnetic field strength on the surface of neutron stars ranges from  104 to 1011  tesla. These are orders of magnitude higher than in any other object: For comparison, a continuous 16 T field has been achieved in the laboratory and is sufficient to levitate a living frog due to diamagnetic levitation. Variations in magnetic field strengths are most likely the main factor that allows different types of neutron stars to be distinguished by their spectra, and explains the periodicity of pulsars. The neutron stars known as magnetars have the strongest magnetic fields, in the range of 108 to 1011 tesla, and have become the widely accepted hypothesis for neutron star types soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). The magnetic energy density of a 108 T field is extreme, greatly exceeding the mass-energy density of ordinary matter. Fields of this strength are able to polarize the vacuum to the point that the vacuum becomes birefringent. Photons can merge or split in two, and virtual particle-antiparticle pairs are produced. The field changes electron energy levels and atoms are forced into thin cylinders. Unlike in an ordinary pulsar, magnetar spin-down can be directly powered by its magnetic field, and the magnetic field is strong enough to stress the crust to the point of fracture. Fractures of the crust cause starquakes, observed as extremely luminous millisecond hard gamma ray bursts. The fireball is trapped by the magnetic field, and comes in and out of view when the star rotates, which is observed as a periodic soft gamma repeater (SGR) emission with a period of 5–8 seconds and which lasts for a few minutes. The origins of the strong magnetic field are as yet unclear. One hypothesis is that of "flux freezing", or conservation of the original magnetic flux during the formation of the neutron star. If an object has a certain magnetic flux over its surface area, and that area shrinks to a smaller area, but the magnetic flux is conserved, then the magnetic field would correspondingly increase. Likewise, a collapsing star begins with a much larger surface area than the resulting neutron star, and conservation of magnetic flux would result in a far stronger magnetic field. However, this simple explanation does not fully explain magnetic field strengths of neutron stars.


Gravity and equation of state

The gravitational field at a neutron star's surface is about times stronger than on Earth, at around . Such a strong gravitational field acts as a gravitational lens and bends the radiation emitted by the neutron star such that parts of the normally invisible rear surface become visible. If the radius of the neutron star is 3''GM''/''c''2 or less, then the photons may be trapped in an orbit, thus making the whole surface of that neutron star visible ''from a single vantage point'', along with destabilizing photon orbits at or below the 1 radius distance of the star. A fraction of the mass of a star that collapses to form a neutron star is released in the supernova explosion from which it forms (from the law of mass–energy equivalence, ). The energy comes from the gravitational binding energy of a neutron star. Hence, the gravitational force of a typical neutron star is huge. If an object were to fall from a height of one meter on a neutron star 12 kilometers in radius, it would reach the ground at around 1400 kilometers per second. However, even before impact, the tidal force would cause spaghettification, breaking any sort of an ordinary object into a stream of material. Because of the enormous gravity, time dilation between a neutron star and Earth is significant. For example, eight years could pass on the surface of a neutron star, yet ten years would have passed on Earth, not including the time-dilation effect of the star's very rapid rotation. Neutron star relativistic equations of state describe the relation of radius vs. mass for various models. The most likely radii for a given neutron star mass are bracketed by models AP4 (smallest radius) and MS2 (largest radius). ''E''B is the ratio of gravitational binding energy mass equivalent to the observed neutron star gravitational mass of ''M'' kilograms with radius ''R'' meters, E_\text = \frac\beta \ = G\,M/R\,^ Given current values *G = 6.67408\times10^\, \text^3\text^\text^CODATA 2014 *c = 2.99792458 \times10^\, \text/\text *M_\odot = 1.98855\times10^\, \text and star masses "M" commonly reported as multiples of one solar mass, M_x = \frac then the relativistic fractional binding energy of a neutron star is E_\text = \frac A neutron star would not be more compact than 10,970 meters radius (AP4 model). Its mass fraction gravitational binding energy would then be 0.187, −18.7% (exothermic). This is not near 0.6/2 = 0.3, −30%. The
equation of state In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or intern ...
for a neutron star is not yet known. It is assumed that it differs significantly from that of a white dwarf, whose equation of state is that of a degenerate gas that can be described in close agreement with
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
. However, with a neutron star the increased effects of general relativity can no longer be ignored. Several equations of state have been proposed (FPS, UU, APR, L, SLy, and others) and current research is still attempting to constrain the theories to make predictions of neutron star matter.NASA
Neutron Star Equation of State Science
Retrieved 2011-09-26
This means that the relation between density and mass is not fully known, and this causes uncertainties in radius estimates. For example, a neutron star could have a radius of 10.7, 11.1, 12.1 or 15.1 kilometers (for EOS FPS, UU, APR or L respectively).


Structure

Current understanding of the structure of neutron stars is defined by existing mathematical models, but it might be possible to infer some details through studies of
neutron-star oscillations Asteroseismology studies the internal structure of the Sun and other stars using oscillations. These can be studied by interpreting the temporal frequency spectrum acquired through observations. In the same way, the more extreme neutron stars might ...
. Asteroseismology, a study applied to ordinary stars, can reveal the inner structure of neutron stars by analyzing observed spectra of stellar oscillations. Current models indicate that matter at the surface of a neutron star is composed of ordinary
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
crushed into a solid lattice with a sea of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s flowing through the gaps between them. It is possible that the nuclei at the surface are
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, due to iron's high
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
per nucleon.Beskin, V. S.; (1999); ''Radiopulsars'', УФН. T. 169, №11, p. 1173-1174 It is also possible that heavy elements, such as iron, simply sink beneath the surface, leaving only light nuclei like
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
. If the surface temperature exceeds 106 kelvins (as in the case of a young pulsar), the surface should be fluid instead of the solid phase that might exist in cooler neutron stars (temperature <106 kelvins). The "atmosphere" of a neutron star is hypothesized to be at most several micrometres thick, and its dynamics are fully controlled by the neutron star's magnetic field. Below the atmosphere one encounters a solid "crust". This crust is extremely hard and very smooth (with maximum surface irregularities on the order of millimetres or less), due to the extreme gravitational field. Proceeding inward, one encounters nuclei with ever-increasing numbers of neutrons; such nuclei would decay quickly on Earth, but are kept stable by tremendous pressures. As this process continues at increasing depths, the neutron drip becomes overwhelming, and the concentration of free neutrons increases rapidly. In that region, there are nuclei, free electrons, and free neutrons. The nuclei become increasingly small (gravity and pressure overwhelming the strong force) until the core is reached, by definition the point where mostly neutrons exist. The expected hierarchy of phases of nuclear matter in the inner crust has been characterized as " nuclear pasta", with fewer voids and larger structures towards higher pressures. The composition of the superdense matter in the core remains uncertain. One model describes the core as superfluid neutron-degenerate matter (mostly neutrons, with some protons and electrons). More exotic forms of matter are possible, including degenerate strange matter (containing
strange quark The strange quark or s quark (from its symbol, s) is the third lightest of all quarks, a type of elementary particle. Strange quarks are found in subatomic particles called hadrons. Examples of hadrons containing strange quarks include kaons ( ...
s in addition to up and down quarks), matter containing high-energy pions and kaons in addition to neutrons, or ultra-dense quark-degenerate matter.


Radiation


Pulsars

Neutron stars are detected from their
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. Neutron stars are usually observed to pulse radio waves and other electromagnetic radiation, and neutron stars observed with pulses are called pulsars. Pulsars' radiation is thought to be caused by particle acceleration near their magnetic poles, which need not be aligned with the rotational axis of the neutron star. It is thought that a large
electrostatic field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
builds up near the magnetic poles, leading to
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
emission. These electrons are magnetically accelerated along the field lines, leading to
curvature radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
, with the radiation being strongly polarized towards the plane of curvature. In addition, high-energy photons can interact with lower-energy photons and the magnetic field for electron−positron pair production, which through electron–positron annihilation leads to further high-energy photons. The radiation emanating from the magnetic poles of neutron stars can be described as ''magnetospheric radiation'', in reference to the magnetosphere of the neutron star. It is not to be confused with '' magnetic dipole radiation'', which is emitted because the magnetic axis is not aligned with the rotational axis, with a radiation frequency the same as the neutron star's rotational frequency. If the axis of rotation of the neutron star is different from the magnetic axis, external viewers will only see these beams of radiation whenever the magnetic axis point towards them during the neutron star rotation. Therefore, periodic pulses are observed, at the same rate as the rotation of the neutron star. In May 2022, astronomers reported an ultra-long-period radio-emitting neutron star PSR J0901-4046, with spin properties distinct from the known neutron stars. It is unclear how its radio emission is generated, and it challenges the current understanding of how pulsars evolve.


Non-pulsating neutron stars

In addition to pulsars, non-pulsating neutron stars have also been identified, although they may have minor periodic variation in luminosity. This seems to be a characteristic of the X-ray sources known as Central Compact Objects in Supernova remnants (CCOs in SNRs), which are thought to be young, radio-quiet isolated neutron stars.


Spectra

In addition to
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a tr ...
emissions, neutron stars have also been identified in other parts of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
. This includes
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
, near infrared,
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
,
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s, and
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s. Pulsars observed in X-rays are known as X-ray pulsars if accretion-powered, while those identified in visible light are known as
optical pulsar An optical pulsar is a pulsar which can be detected in the visible spectrum. There are very few of these known: the Crab pulsar, Crab Pulsar was detected by Stroboscopic effect, stroboscopic techniques in 1969, shortly after its discovery in radio ...
s. The majority of neutron stars detected, including those identified in optical, X-ray, and gamma rays, also emit radio waves; the Crab Pulsar produces electromagnetic emissions across the spectrum. However, there exist neutron stars called radio-quiet neutron stars, with no radio emissions detected.


Rotation

Neutron stars rotate extremely rapidly after their formation due to the conservation of angular momentum; in analogy to spinning ice skaters pulling in their arms, the slow rotation of the original star's core speeds up as it shrinks. A newborn neutron star can rotate many times a second.


Spin down

Over time, neutron stars slow, as their rotating magnetic fields in effect radiate energy associated with the rotation; older neutron stars may take several seconds for each revolution. This is called ''spin down''. The rate at which a neutron star slows its rotation is usually constant and very small. The periodic time (''P'') is the rotational period, the time for one rotation of a neutron star. The spin-down rate, the rate of slowing of rotation, is then given the symbol \dot (''P''-dot), the
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of ''P'' with respect to time. It is defined as periodic time increase per unit time; it is a dimensionless quantity, but can be given the units of s⋅s−1 (seconds per second). The spin-down rate (''P''-dot) of neutron stars usually falls within the range of 10−22 to 10−9 s⋅s−1, with the shorter period (or faster rotating) observable neutron stars usually having smaller ''P''-dot. As a neutron star ages, its rotation slows (as ''P'' increases); eventually, the rate of rotation will become too slow to power the radio-emission mechanism, and the neutron star can no longer be detected. ''P'' and ''P''-dot allow minimum magnetic fields of neutron stars to be estimated. ''P'' and ''P''-dot can be also used to calculate the ''characteristic age'' of a pulsar, but gives an estimate which is somewhat larger than the true age when it is applied to young pulsars. ''P'' and ''P''-dot can also be combined with neutron star's moment of inertia to estimate a quantity called ''spin-down luminosity'', which is given the symbol \dot (''E''-dot). It is not the measured luminosity, but rather the calculated loss rate of rotational energy that would manifest itself as radiation. For neutron stars where the spin-down luminosity is comparable to the actual luminosity, the neutron stars are said to be " rotation powered". The observed luminosity of the Crab Pulsar is comparable to the spin-down luminosity, supporting the model that rotational kinetic energy powers the radiation from it. With neutron stars such as magnetars, where the actual luminosity exceeds the spin-down luminosity by about a factor of one hundred, it is assumed that the luminosity is powered by magnetic dissipation, rather than being rotation powered. ''P'' and ''P''-dot can also be plotted for neutron stars to create a ''P''–''P''-dot diagram. It encodes a tremendous amount of information about the pulsar population and its properties, and has been likened to the Hertzsprung–Russell diagram in its importance for neutron stars.


Spin up

Neutron star rotational speeds can increase, a process known as spin up. Sometimes neutron stars absorb orbiting matter from companion stars, increasing the rotation rate and reshaping the neutron star into an oblate spheroid. This causes an increase in the rate of rotation of the neutron star of over a hundred times per second in the case of millisecond pulsars. The most rapidly rotating neutron star currently known,
PSR J1748-2446ad PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portugal) ( ...
, rotates at 716 revolutions per second. A 2007 paper reported the detection of an X-ray burst oscillation, which provides an indirect measure of spin, of 1122  Hz from the neutron star XTE J1739-285, suggesting 1122 rotations a second. However, at present, this signal has only been seen once, and should be regarded as tentative until confirmed in another burst from that star.


Glitches and starquakes

Sometimes a neutron star will undergo a glitch, a sudden small increase of its rotational speed or spin up. Glitches are thought to be the effect of a starquake—as the rotation of the neutron star slows, its shape becomes more spherical. Due to the stiffness of the "neutron" crust, this happens as discrete events when the crust ruptures, creating a starquake similar to earthquakes. After the starquake, the star will have a smaller equatorial radius, and because angular momentum is conserved, its rotational speed has increased. Starquakes occurring in magnetars, with a resulting glitch, is the leading hypothesis for the gamma-ray sources known as soft gamma repeaters.Kouveliotou, C.; Duncan, R. C.; Thompson, C.; (February 2003);
Magnetars Magnetars
", ''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
''
Recent work, however, suggests that a starquake would not release sufficient energy for a neutron star glitch; it has been suggested that glitches may instead be caused by transitions of vortices in the theoretical superfluid core of the neutron star from one metastable energy state to a lower one, thereby releasing energy that appears as an increase in the rotation rate.


"Anti-glitches"

An "anti-glitch", a sudden small decrease in rotational speed, or spin down, of a neutron star has also been reported. It occurred in the magnetar 1E 2259+586, that in one case produced an X-ray luminosity increase of a factor of 20, and a significant spin-down rate change. Current neutron star models do not predict this behavior. If the cause was internal, it suggests differential rotation of solid outer crust and the superfluid component of the magnetar's inner structure.


Population and distances

At present, there are about 3,200 known neutron stars in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
and the Magellanic Clouds, the majority of which have been detected as radio pulsars. Neutron stars are mostly concentrated along the disk of the Milky Way, although the spread perpendicular to the disk is large because the supernova explosion process can impart high translational speeds (400 km/s) to the newly formed neutron star. Some of the closest known neutron stars are RX J1856.5−3754, which is about 400 light-years from Earth, and PSR J0108−1431 about 424 light years. RX J1856.5-3754 is a member of a close group of neutron stars called The Magnificent Seven. Another nearby neutron star that was detected transiting the backdrop of the constellation Ursa Minor has been nicknamed Calvera by its Canadian and American discoverers, after the villain in the 1960 film '' The Magnificent Seven''. This rapidly moving object was discovered using the ROSAT/Bright Source Catalog. Neutron stars are only detectable with modern technology during the earliest stages of their lives (almost always less than 1 million years) and are vastly outnumbered by older neutron stars that would only be detectable through their blackbody radiation and gravitational effects on other stars.


Binary neutron star systems

About 5% of all known neutron stars are members of a binary system. The formation and evolution of binary neutron stars and double neutron stars can be a complex process. Neutron stars have been observed in binaries with ordinary main-sequence stars, red giants, white dwarfs, or other neutron stars. According to modern theories of binary evolution, it is expected that neutron stars also exist in binary systems with black hole companions. The merger of binaries containing two neutron stars, or a neutron star and a black hole, has been observed through the emission of
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside i ...
.


X-ray binaries

Binary systems containing neutron stars often emit X-rays, which are emitted by hot gas as it falls towards the surface of the neutron star. The source of the gas is the companion star, the outer layers of which can be stripped off by the gravitational force of the neutron star if the two stars are sufficiently close. As the neutron star accretes this gas, its mass can increase; if enough mass is accreted, the neutron star may collapse into a black hole.


Neutron star binary mergers and nucleosynthesis

The distance between two neutron stars in a close binary system is observed to shrink as
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside i ...
are emitted. Ultimately, the neutron stars will come into contact and coalesce. The coalescence of binary neutron stars is one of the leading models for the origin of short gamma-ray bursts. Strong evidence for this model came from the observation of a kilonova associated with the short-duration gamma-ray burst GRB 130603B, and finally confirmed by detection of gravitational wave
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
and short GRB 170817A by LIGO, Virgo, and 70 observatories covering the electromagnetic spectrum observing the event. The light emitted in the kilonova is believed to come from the radioactive decay of material ejected in the merger of the two neutron stars. This material may be responsible for the production of many of the
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s beyond
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, as opposed to the
supernova nucleosynthesis Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning proce ...
theory.


Planets

Neutron stars can host exoplanets. These can be original, circumbinary, captured, or the result of a second round of planet formation. Pulsars can also strip the atmosphere off from a star, leaving a planetary-mass remnant, which may be understood as a chthonian planet or a stellar object depending on interpretation. For pulsars, such pulsar planets can be detected with the pulsar timing method, which allows for high precision and detection of much smaller planets than with other methods. Two systems have been definitively confirmed. The first exoplanets ever to be detected were the three planets Draugr, Poltergeist and Phobetor around
PSR B1257+12 PSR B1257+12, previously designated PSR 1257+12, alternatively designated PSR J1300+1240, is a millisecond pulsar located 2,300 light-years from the Sun in the constellation of Virgo, rotating at about 161 times per second (faster tha ...
, discovered in 1992–1994. Of these, Draugr is the smallest exoplanet ever detected, at a mass of twice that of the Moon. Another system is PSR B1620−26, where a
circumbinary planet A circumbinary planet is a planet that orbits two stars instead of one. The two stars orbit each other in a binary system, while the planet typically orbits farther from the center of the system than either of the two stars. In contrast, circum ...
orbits a neutron star-white dwarf binary system. Also, there are several unconfirmed candidates. Pulsar planets receive little visible light, but massive amounts of ionizing radiation and high-energy stellar wind, which makes them rather hostile environments.


History of discoveries

At the meeting of the
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of k ...
in December 1933 (the proceedings were published in January 1934), Walter Baade and
Fritz Zwicky Fritz Zwicky (; ; February 14, 1898 – February 8, 1974) was a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he made many important contributions in theoretical an ...
proposed the existence of neutron stars, less than two years after the discovery of the neutron by James Chadwick. In seeking an explanation for the origin of a
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
, they tentatively proposed that in supernova explosions ordinary stars are turned into stars that consist of extremely closely packed neutrons that they called neutron stars. Baade and Zwicky correctly proposed at that time that the release of the gravitational binding energy of the neutron stars powers the supernova: "In the supernova process, mass in bulk is annihilated". Neutron stars were thought to be too faint to be detectable and little work was done on them until November 1967, when Franco Pacini pointed out that if the neutron stars were spinning and had large magnetic fields, then electromagnetic waves would be emitted. Unbeknown to him, radio astronomer Antony Hewish and his research assistant Jocelyn Bell at Cambridge were shortly to detect radio pulses from stars that are now believed to be highly magnetized, rapidly spinning neutron stars, known as pulsars. In 1965, Antony Hewish and Samuel Okoye discovered "an unusual source of high radio brightness temperature in the Crab Nebula". This source turned out to be the Crab Pulsar that resulted from the great supernova of 1054. In 1967, Iosif Shklovsky examined the X-ray and optical observations of Scorpius X-1 and correctly concluded that the radiation comes from a neutron star at the stage of
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
. In 1967,
Jocelyn Bell Burnell Dame Susan Jocelyn Bell Burnell (; Bell; born 15 July 1943) is an astrophysicist from Northern Ireland who, as a postgraduate student, discovered the first radio pulsars in 1967. The discovery eventually earned the Nobel Prize in Physics in ...
and Antony Hewish discovered regular radio pulses from
PSR B1919+21 PSR B1919+21 is a pulsar with a period of 1.3373 seconds and a pulse width of 0.04 seconds. Discovered by Jocelyn Bell Burnell on 28 November 1967, it is the first discovered radio pulsar. The power and regularity of the signals wer ...
. This pulsar was later interpreted as an isolated, rotating neutron star. The energy source of the pulsar is the rotational energy of the neutron star. The majority of known neutron stars (about 2000, as of 2010) have been discovered as pulsars, emitting regular radio pulses. In 1968, Richard V. E. Lovelace and collaborators discovered period P\!\approx 33 ms of the Crab pulsar using Arecibo Observatory."Crab nebula pulsar NP 0532"
1969, J. M. Comella, H. D. Craft, R. V. E. Lovelace, J. M. Sutton, G. L. Tyler Nature 221 (5179), 453-454
"Digital Search Methods for Pulsars"
1969, R. V. E. Lovelace, J. M. Sutton, E. E. Salpeter Nature 222 (5190), 231-233
After this discovery, scientists concluded that
pulsars A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward E ...
were rotating neutron stars."On the discovery of the period of the Crab Nebula pulsar"
R. V. E. Lovelace and G. L. Tyler 2012, The Observatory, 132, 186.
Before that, many scientists believed that pulsars were pulsating
white dwarfs A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fr ...
. In 1971,
Riccardo Giacconi Riccardo Giacconi ( , ; October 6, 1931 – December 9, 2018) was an Italian-American Nobel Prize-winning astrophysicist who laid down the foundations of X-ray astronomy. He was a professor at the Johns Hopkins University. Biography Born ...
, Herbert Gursky, Ed Kellogg, R. Levinson, E. Schreier, and H. Tananbaum discovered 4.8 second pulsations in an X-ray source in the constellation Centaurus,
Cen X-3 Centaurus X-3 (4U 1118-60) is an X-ray pulsar with a period of 4.84 seconds. It was the first X-ray pulsar to be discovered, and the third X-ray source to be discovered in the constellation Centaurus. The system consists of a neutron star ...
. They interpreted this as resulting from a rotating hot neutron star. The energy source is gravitational and results from a rain of gas falling onto the surface of the neutron star from a
companion star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in ...
or the interstellar medium. In 1974, Antony Hewish was awarded the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
"for his decisive role in the discovery of pulsars" without Jocelyn Bell who shared in the discovery. In 1974, Joseph Taylor and Russell Hulse discovered the first binary pulsar,
PSR B1913+16 PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portugal) ( ...
, which consists of two neutron stars (one seen as a pulsar) orbiting around their center of mass.
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's general theory of relativity predicts that massive objects in short binary orbits should emit gravitational waves, and thus that their orbit should decay with time. This was indeed observed, precisely as general relativity predicts, and in 1993, Taylor and Hulse were awarded the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for this discovery. In 1982, Don Backer and colleagues discovered the first millisecond pulsar, PSR B1937+21. This object spins 642 times per second, a value that placed fundamental constraints on the mass and radius of neutron stars. Many millisecond pulsars were later discovered, but PSR B1937+21 remained the fastest-spinning known pulsar for 24 years, until
PSR J1748-2446ad PSR may refer to: Organizations * Pacific School of Religion, Berkeley, California, US * Palestinian Center for Policy and Survey Research * Physicians for Social Responsibility, US ;Political parties: * Revolutionary Socialist Party (Portugal) ( ...
(which spins ~716 times a second) was discovered. In 2003, Marta Burgay and colleagues discovered the first double neutron star system where both components are detectable as pulsars, PSR J0737−3039. The discovery of this system allows a total of 5 different tests of general relativity, some of these with unprecedented precision. In 2010, Paul Demorest and colleagues measured the mass of the millisecond pulsar PSR J1614−2230 to be , using
Shapiro delay The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic solar-system tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return t ...
. This was substantially higher than any previously measured neutron star mass (, see PSR J1903+0327), and places strong constraints on the interior composition of neutron stars. In 2013, John Antoniadis and colleagues measured the mass of PSR J0348+0432 to be , using white dwarf spectroscopy. This confirmed the existence of such massive stars using a different method. Furthermore, this allowed, for the first time, a test of general relativity using such a massive neutron star. In August 2017, LIGO and Virgo made first detection of gravitational waves produced by colliding neutron stars. In October 2018, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to the historic
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
and associated with the merger of two neutron stars. The similarities between the two events, in terms of
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
, optical and
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers. In July 2019, astronomers reported that a new method to determine the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
, and resolve the discrepancy of earlier methods, has been proposed based on the mergers of pairs of neutron stars, following the detection of the neutron star merger of
GW170817 GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy . The signal was produced by the last minutes of a binary pair of neutron stars' inspir ...
. Their measurement of the Hubble constant is (km/s)/Mpc. A 2020 study by University of Southampton PhD student Fabian Gittins suggested that surface irregularities ("mountains") may only be fractions of a millimeter tall (about 0.000003% of the neutron star's diameter), hundreds of times smaller than previously predicted, a result bearing implications for the non-detection of gravitational waves from spinning neutron stars.


Subtypes table

* Neutron star ** Isolated neutron star (INS): not in a binary system. ***
Rotation-powered pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward ...
(RPP or "radio pulsar"): neutron stars that emit directed pulses of radiation towards us at regular intervals (due to their strong magnetic fields). ****
Rotating radio transient Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pul ...
(RRATs): are thought to be pulsars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars. *** Magnetar: a neutron star with an extremely strong magnetic field (1000 times more than a regular neutron star), and long rotation periods (5 to 12 seconds). **** Soft gamma repeater (SGR). **** Anomalous X-ray pulsar (AXP). *** Radio-quiet neutron stars. **** X-ray dim isolated neutron stars. **** Central compact objects in supernova remnants (CCOs in SNRs): young, radio-quiet non-pulsating X-ray sources, thought to be Isolated Neutron Stars surrounded by supernova remnants. ** X-ray pulsars or "accretion-powered pulsars": a class of
X-ray binaries X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the ''donor'' (usually a relatively normal star), to the other component, called the ''accretor'', which ...
. *** Low-mass X-ray binary pulsars: a class of
low-mass X-ray binaries X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the ''donor'' (usually a relatively normal star), to the other component, called the ''accretor'', which ...
(LMXB), a pulsar with a main sequence star, white dwarf or red giant. **** Millisecond pulsar (MSP) ("recycled pulsar"). ***** "Spider Pulsar", a pulsar where their companion is a semi-degenerate star. ****** "Black Widow" pulsar, a pulsar that falls under the "Spider Pulsar" if the companion has extremely low mass (less than 0.1 solar masses). ****** "Redback" pulsar, are if the companion is more massive. ***** Sub-millisecond pulsar. ****
X-ray burster X-ray bursters are one class of X-ray binary stars exhibiting X-ray bursts, periodic and rapid increases in luminosity (typically a factor of 10 or greater) that peak in the X-ray region of the electromagnetic spectrum. These astrophysical syst ...
: a neutron star with a low mass binary companion from which matter is accreted resulting in irregular bursts of energy from the surface of the neutron star. *** Intermediate-mass X-ray binary pulsars: a class of intermediate-mass X-ray binaries (IMXB), a pulsar with an intermediate mass star. *** High-mass X-ray binary pulsars: a class of
high-mass X-ray binaries X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the ''donor'' (usually a relatively normal star), to the other component, called the ''accretor'', which ...
(HMXB), a pulsar with a massive star. ***
Binary pulsar A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. (In at least one case, the double pulsar PSR J0737-3039, the companion neutron star is another pulsar as well.) Binary pulsars are one of the few objects ...
s: a pulsar with a binary companion, often a white dwarf or neutron star. *** X-ray tertiary (theorized). * Theorized compact stars with similar properties. ** Protoneutron star (PNS), theorized. **
Exotic star An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Exotic stars incl ...
***
Thorne–Żytkow object A Thorne–Żytkow object (TŻO or TZO), also known as a hybrid star, is a conjectured type of star wherein a red giant or red supergiant contains a neutron star at its core, formed from the collision of the giant with the neutron star. Such obje ...
: currently a hypothetical merger of a neutron star into a red giant star. *** Quark star: currently a hypothetical type of neutron star composed of quark matter, or strange matter. As of 2018, there are three candidates. *** Electroweak star: currently a hypothetical type of extremely heavy neutron star, in which the quarks are converted to leptons through the electroweak force, but the gravitational collapse of the neutron star is prevented by radiation pressure. As of 2018, there is no evidence for their existence. ***
Preon star An exotic star is a hypothetical compact star composed of exotic matter (something not made of electrons, protons, neutrons or muons), and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Exotic star ...
: currently a hypothetical type of neutron star composed of
preon matter In particle physics, preons are point particles, conceived of as sub-components of quark, quarks and leptons. The word was coined by Jogesh Pati and Abdus Salam, in 1974. Interest in preon models peaked in the 1980s but has slowed, as the Standa ...
. As of 2018, there is no evidence for the existence of preons.


Examples of neutron stars

* Black Widow Pulsar – a millisecond pulsar that is very massive. * PSR J0952-0607 – the heaviest neutron star with , a type of Black Widow Pulsar. * LGM-1 (now known as PSR B1919+21) – the first recognized radio-pulsar. It was discovered by
Jocelyn Bell Burnell Dame Susan Jocelyn Bell Burnell (; Bell; born 15 July 1943) is an astrophysicist from Northern Ireland who, as a postgraduate student, discovered the first radio pulsars in 1967. The discovery eventually earned the Nobel Prize in Physics in ...
in 1967. *
PSR B1257+12 PSR B1257+12, previously designated PSR 1257+12, alternatively designated PSR J1300+1240, is a millisecond pulsar located 2,300 light-years from the Sun in the constellation of Virgo, rotating at about 161 times per second (faster tha ...
– the first neutron star discovered with planets (a millisecond pulsar). * PSR B1509−58 – source of the "Hand of God" photo shot by the
Chandra X-ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources ...
. * RX J1856.5−3754 – the closest neutron star. * The Magnificent Seven – a group of nearby, X-ray dim isolated neutron stars. * PSR J0348+0432 – the most massive neutron star with a well-constrained mass, 2.01 ± 0.04 . * RX J0806.4-4123 – neutron star source of infrared radiation. * SWIFT J1756.9-2508 – a millisecond pulsar with a stellar-type companion with planetary range mass (below brown dwarf). * Swift J1818.0-1607 – the youngest known magnetar.


Gallery

File:Noirlab2218a_Neutron_Star_Merger_in_the_Early_Universe.jpg,


Video – animation

File:Neutron Star Manhattan.ogv, Neutron stars containing 500,000 Earth-masses in diameter sphere File:Crash and Burst.ogv, Neutron stars colliding File:Neutron star collision.ogv, Neutron star collision


See also

*
Dragon's Egg ''Dragon's Egg'' is a 1980 hard science fiction novel by American writer Robert L. Forward. In the story, Dragon's Egg is a neutron star with a surface gravity 67 billion times that of Earth, and inhabited by cheela, intelligent creatures ...
* Neutron star merger * Neutronium * Preon-degenerate matter *
Rotating radio transient Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pul ...
* Little green men * IRAS 00500+6713 (in 10,000 y)


Notes


References


Sources

* * *


External links


Introduction to neutron stars
* **

*

. SpaceDaily.com. April 26, 2006 *
Mysterious X-ray sources may be lone neutron stars
David Shiga. ''New Scientist''. 23 June 2006 *
Massive neutron star rules out exotic matter
. ''New Scientist''. According to a new analysis, exotic states of matter such as free quarks or BECs do not arise inside neutron stars. *
Neutron star clocked at mind-boggling velocity
. ''New Scientist''. A neutron star has been clocked traveling at more than 1500 kilometers per second. {{DEFAULTSORT:Neutron Star Star types Exotic matter Articles containing video clips Compact stars