Nanowire battery
   HOME

TheInfoList



OR:

A nanowire battery uses
nanowires A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
to increase the surface area of one or both of its
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s. Some designs (silicon, germanium and
transition metal oxides An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
), variations of the
lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also s ...
have been announced, although none are commercially available. All of the concepts replace the traditional
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
anode and could improve battery performance.


Silicon

Silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
is an attractive material for applications as lithium battery anodes because it offers advantageous material properties. In particular, silicon has a low discharge potential and a high theoretical charge capacity ten times higher than that of typical graphite anodes currently used in industry.
Nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
s could improve these properties by increasing the amount of available surface area in contact with the electrolyte, thereby increasing the anode’s
power density Power density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volum ...
and allowing for faster charging and higher current delivery. However, the use of silicon anodes in batteries has been limited by the volume expansion during
lithiation In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom ...
. Silicon swells by 400% as it intercalates lithium during charging, resulting in degradation of the material. This volume expansion occurs anisotropically, caused by crack propagation immediately following a moving lithiation front. These cracks result in pulverization and substantial capacity loss noticeable within the first few cycles. The extensive 2007 Review Article by Kasavajjula et al. summarizes early research on silicon-based anodes for lithium-ion secondary cells. In particular, Hong Li et al. showed in 2000 that the electrochemical insertion of lithium ions in silicon nanoparticles and silicon nanowires leads to the formation of an amorphous Li-Si alloy. The same year, Bo Gao and his doctoral advisor, Professor Otto Zhou described the cycling of electrochemical cells with anodes comprising silicon nanowires, with a reversible capacity ranging from at least approximately 900 to 1500 mAh/g. Research done at Stanford University indicates that
silicon nanowire Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s (SiNWs) grown directly on the current collector (via VLS growth methods) are able to circumvent the negative effects associated with volume expansion. This geometry lends itself to several advantages. First, the nanowire diameter allows for improved accommodation of volume changes during lithiation without fracture. Second, each nanowire is attached to the current collector such that each can contribute to the overall capacity. Third, the nanowires are direct pathways for charge transport; in particle-based electrodes, charges are forced to navigate interparticle contact areas (a less efficient process). Silicon nanowires have a theoretical capacity of roughly 4,200 mAh g^-1, which is larger than the capacity of other forms of silicon. This value indicates a significant improvement over graphite, which has a theoretical capacity of 372 mAh g^-1 in its fully lithiated state of LiC6. Additional research has involved depositing carbon coatings onto silicon nanowires, which helps stabilize the material such that a stable solid electrolyte interphase (SEI) forms. An SEI is an inevitable byproduct of the electrochemistry that occurs in the battery; its formation contributes to decreased capacity in the battery since it is an electrically insulating phase (despite being ionically conductive). It can also dissolve and reform over multiple battery cycles. Hence, a stable SEI is preferable in order to prevent continued capacity loss as the battery is used. When carbon is coated onto silicon nanowires, capacity retention has been observed at 89% of the initial capacity after 200 cycles. This capacity retention is on par with that of graphitic anodes today. One design uses a stainless steel anode covered in silicon nanowires. Silicon stores ten times more
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
than graphite, offering increased energy density. The large surface area increases the anode's
power density Power density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volum ...
, thereby allowing for fast charging and high current delivery. The anode was invented at Stanford University in 2007. In September 2010, researchers demonstrated 250 charge cycles maintaining above 80 percent of initial storage capacity. However, some studies pointed out that Si nanowire anodes exhibit significant fade in energy capacity with more charge cycles; this is caused by the volumetric expansion of silicon nanowires during
lithiation In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom ...
process. Researchers has proposed many solutions to remedy this problem: published results in 2012 showed that doping impurities to the nanowire anode improves the battery performance, and it was found that phosphorus-doped Si nanowires achieved better performance when compared with boron and undoped
nanowire A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 metres). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less ...
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s; researchers also demonstrated the possibility of sustaining an 85% of initial capacity after cycling over 6,000 times by placing a nominally undoped silicon anode into a doubled-walled
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
nanotube with
silicon oxide Silicon oxide may refer to either of the following: *Silicon dioxide or quartz, SiO2, very well characterized *Silicon monoxide Silicon monoxide is the chemical compound with the formula SiO where silicon is present in the oxidation state +2. In ...
ion-permeating layer as coating. The silicon nanowire-based battery cell also provides opportunity for dimensional flexible energy source, which would also leads to the development of wearable technological device. Scientist from
Rice University William Marsh Rice University (Rice University) is a private research university in Houston, Texas. It is on a 300-acre campus near the Houston Museum District and adjacent to the Texas Medical Center. Rice is ranked among the top universities ...
showed this possibility by depositing porous copper nanoshells around the silicon nanowire within a polymer matrix. This lithium-polymer silicon nanowire battery (LIOPSIL) has a sufficient operational full cell voltage of 3.4V and is mechanically flexible and scalable. Commercialization was originally expected to occur in 2012, but was later deferred to 2014. A related company, Amprius, shipped a related device with silicon and other materials in 2013.
Canonical The adjective canonical is applied in many contexts to mean "according to the canon" the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, "canonical examp ...
announced on July 22, 2013, that its
Ubuntu Edge The Ubuntu Edge was a proposed high-concept smartphone announced by Canonical Ltd. on 22 July 2013. Canonical was seeking to crowdfund a production run of around 40,000 units through Indiegogo. It had the highest target of any crowdfunded pr ...
smartphone would contain a silicon-anode lithium-ion battery.


Germanium

An anode using germanium nanowire was claimed to have the ability to increase the energy density and cycle durability of lithium-ion batteries. Like silicon, germanium has a high theoretical capacity (1600 mAh g-1), expands during charging, and disintegrates after a small number of cycles. However, germanium is 400 times more effective at intercalating lithium than silicon, making it an attractive anode material. The anodes claimed to retain capacities of 900 mAh/g after 1100 cycles, even at discharge rates of 20–100C. This performance was attributed to a restructuring of the nanowires that occurs within the first 100 cycles to form a mechanically robust, continuously porous network. Once formed, the restructured anode loses only 0.01% of capacity per cycle thereafter. The material forms a stable structure after these initial cycles that is capable of withstanding pulverization. In 2014, researchers developed a simple way to produce nanowires of germanium from an aqueous solution.


Transition metal oxides

Transition metal oxides An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
(TMO), such as Cr2O3, Fe2O3, MnO2, Co3O4 and PbO2, have many advantages as anode materials over conventional cell materials for lithium-ion battery (LIB) and other battery systems. Some of them possess high theoretical energy capacity, and are naturally abundant, non-toxic and also environmental friendly. As the concept of the nanostructred battery electrode has been introduced, experimentalists start to look into the possibility of TMO-based nanowires as electrode materials. Some recent investigations into this concept are discussed in the following subsection.


Lead oxide anode

Lead-acid battery is the oldest type of rechargeable battery cell. Even though the raw material (PbO2) for the cell production is fairly accessible and cheap, lead-acid battery cells have relatively small specific energy. The paste thickening effect (volumetric expansion effect) during the operation cycle also blocks the effective flow of the electrolyte. These problems limited the potential of the cell to accomplish some energy-intensive tasks. In 2014, experimentalist successfully obtained PbO2 nanowire through simple template electrodeposition. The performance of this nanowire as anode for lead-acid battery has also been evaluated. Due to largely increased surface area, this cell was able to deliver an almost constant capacity of about 190 mAh g−1 even after 1,000 cycles. This result showed this nanostructured PbO2 as a fairly promising substitute for the normal lead-acid anode.


Manganese oxide

MnO2 has always been a good candidate for
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
materials due to its high energy capacity, non-toxicity and cost effectiveness. However, lithium-ion insertion into the crystal matrix during charging/discharging cycle would cause significant volumetric expansion. To counteract this effect during operation cycle, scientists recently proposed the idea of producing a Li-enriched MnO2 nanowire with a nominal stoichiometry of Li2MnO3 as anode materials for
LIB lib or Lib may refer to: Computing * Library (computing) ** .lib, a static library on Microsoft platforms ** , a directory on Unix-like systems * Lib-80, a Microsoft Library Manager tool; see Microsoft MACRO-80 People * Lib, one of two Jaredite ...
. This new proposed anode materials enable the battery cell to reach an energy capacity of 1279 mAh g−1 at current density of 500 mA even after 500 cycles. This performance is much higher than that of pure MnO2 anode or MnO2 nanowire anode cells.


Heterostructure TMOs

Heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in ma ...
of different transition metal oxides would sometimes provide the potential of a more well-rounded performance of LIBs. In 2013, researchers successfully synthesized a branched Co3O4/Fe2O3 nanowire
heterostructure A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in m ...
using
hydrothermal Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, ''water'',Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with th ...
method. This
heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in ma ...
can be used as an alternative anode for the LIB cell. At operation, Co3O4 promotes a more efficient ionic transport, while Fe2O3 enhances the theoretical capacity of the cell by increasing the surface area. A high reversible capacity of 980 mAh g−1 was reported. The possibility of fabrication heterogeneous ZnCo2O4/NiO nanowire arrays anode has also been explored in some studies. However, the efficiency of this material as anode is still to be evaluated.


Gold

In 2016, researchers at the
University of California, Irvine The University of California, Irvine (UCI or UC Irvine) is a public land-grant research university in Irvine, California. One of the ten campuses of the University of California system, UCI offers 87 undergraduate degrees and 129 graduate and p ...
announced the invention of a nanowire material capable of over 200,000 charge cycles without any breakage of the nanowires. The technology could lead to batteries that never need to be replaced in most applications. The
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
nanowires are strengthened by a manganese dioxide shell encased in an Plexiglas-like gel electrolyte. The combination is reliable and resistant to failure. After cycling a test electrode about 200,000 times, no loss of capacity or power, nor fracturing of any nanowires occurred.


See also

*
List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry. ...
* List of emerging technologies * Nanoball batteries


References


External links

* * * * *
Graphene-Silicon Anodes for Li-ion Batteries Go Commercial


{{Galvanic cells American inventions Emerging technologies Lithium-ion batteries Nanoelectronics Rechargeable batteries