Michelson interferometer
   HOME

TheInfoList



OR:

The Michelson interferometer is a common configuration for optical
interferometry Interferometry is a technique which uses the '' interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber o ...
and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a
beam splitter A beam splitter or ''beamsplitter'' is an optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as interferometers, also finding wid ...
, a
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the
superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So tha ...
. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or
camera A camera is an optical instrument that can capture an image. Most cameras can capture 2D images, with some more advanced models being able to capture 3D images. At a basic level, most cameras consist of sealed boxes (the camera body), with ...
. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test. The Michelson interferometer (among other interferometer configurations) is employed in many scientific experiments and became well known for its use by Michelson and
Edward Morley Edward Williams Morley (January 29, 1838 – February 24, 1923) was an American scientist known for his precise and accurate measurement of the atomic weight of oxygen, and for the Michelson–Morley experiment. Biography Morley was born in New ...
in the famous Michelson–Morley experiment (1887) in a configuration which would have detected the Earth's motion through the supposed luminiferous aether that most physicists at the time believed was the medium in which light waves propagated. The null result of that experiment essentially disproved the existence of such an aether, leading eventually to the
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
and the revolution in physics at the beginning of the twentieth century. In 2015, another application of the Michelson interferometer, LIGO, made the first direct observation of
gravitational wave Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
s. That observation confirmed an important prediction of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, validating the theory's prediction of space-time distortion in the context of large scale cosmic events (known as strong field tests).


Configuration

A Michelson interferometer consists minimally of mirrors ''M1'' & ''M2'' and a
beam splitter A beam splitter or ''beamsplitter'' is an optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as interferometers, also finding wid ...
''M''. In Fig 2, a source ''S'' emits light that hits the beam splitter (in this case, a plate beamsplitter) surface ''M'' at point ''C''. ''M'' is partially reflective, so part of the light is transmitted through to point ''B'' while some is reflected in the direction of ''A''. Both beams recombine at point ''C' ''to produce an interference pattern incident on the detector at point ''E'' (or on the retina of a person's eye). If there is a slight angle between the two returning beams, for instance, then an imaging detector will record a sinusoidal ''fringe pattern'' as shown in Fig. 3b. If there is perfect spatial alignment between the returning beams, then there will not be any such pattern but rather a constant intensity over the beam dependent on the differential pathlength; this is difficult, requiring very precise control of the beam paths. Fig. 2 shows use of a coherent (laser) source. Narrowband spectral light from a
discharge Discharge may refer to Expel or let go * Discharge, the act of firing a gun * Discharge, or termination of employment, the end of an employee's duration with an employer * Military discharge, the release of a member of the armed forces from ser ...
or even white light can also be used, however to obtain significant interference contrast it is required that the differential pathlength is reduced below the
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves di ...
of the light source. That can be only
micrometer Micrometer can mean: * Micrometer (device), used for accurate measurements by means of a calibrated screw * American spelling of micrometre The micrometre ( international spelling as used by the International Bureau of Weights and Measures; ...
s for white light, as discussed below. If a lossless beamsplitter is employed, then one can show that optical energy is conserved. At every point on the interference pattern, the power that is ''not'' directed to the detector at ''E'' is rather present in a beam (not shown) returning in the direction of the source. As shown in Fig. 3a and 3b, the observer has a direct view of mirror ''M1'' seen through the beam splitter, and sees a reflected image ''M'2'' of mirror ''M2''. The fringes can be interpreted as the result of interference between light coming from the two virtual images ''S'1'' and ''S'2'' of the original source ''S''. The characteristics of the interference pattern depend on the nature of the light source and the precise orientation of the mirrors and beam splitter. In Fig. 3a, the optical elements are oriented so that ''S'1'' and ''S'2'' are in line with the observer, and the resulting interference pattern consists of circles centered on the normal to ''M1'' and ''M'2'' (fringes of equal
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Ea ...
). If, as in Fig. 3b, ''M1'' and ''M'2'' are tilted with respect to each other, the interference fringes will generally take the shape of
conic sections In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a spe ...
(hyperbolas), but if ''M1'' and ''M'2'' overlap, the fringes near the axis will be straight, parallel, and equally spaced (fringes of equal thickness). If S is an extended source rather than a point source as illustrated, the fringes of Fig. 3a must be observed with a telescope set at infinity, while the fringes of Fig. 3b will be localized on the mirrors.


Source bandwidth

White light has a tiny
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves di ...
and is difficult to use in a Michelson (or Mach–Zehnder) interferometer. Even a narrowband (or "quasi-monochromatic") spectral source requires careful attention to issues of chromatic dispersion when used to illuminate an interferometer. The two optical paths must be practically equal for all wavelengths present in the source. This requirement can be met if both light paths cross an equal thickness of glass of the same
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
. In Fig. 4a, the horizontal beam crosses the beam splitter three times, while the vertical beam crosses the beam splitter once. To equalize the dispersion, a so-called compensating plate identical to the substrate of the beam splitter may be inserted into the path of the vertical beam. In Fig. 4b, we see using a cube beam splitter already equalizes the pathlengths in glass. The requirement for dispersion equalization is eliminated by using extremely narrowband light from a laser. The extent of the fringes depends on the
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves di ...
of the source. In Fig. 3b, the yellow sodium light used for the fringe illustration consists of a pair of closely spaced lines, D1 and D2, implying that the interference pattern will blur after several hundred fringes. Single longitudinal mode
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
s are highly coherent and can produce high contrast interference with differential pathlengths of millions or even billions of wavelengths. On the other hand, using white (broadband) light, the central fringe is sharp, but away from the central fringe the fringes are colored and rapidly become indistinct to the eye. Early experimentalists attempting to detect the earth's velocity relative to the supposed luminiferous aether, such as Michelson and Morley (1887) and Miller (1933), used quasi-monochromatic light only for initial alignment and coarse path equalization of the interferometer. Thereafter they switched to white (broadband) light, since using white light interferometry they could measure the point of ''absolute phase'' equalization (rather than phase modulo 2π), thus setting the two arms' pathlengths equal.Michelson (1881) wrote, "... when they he fringes using sodium lightwere of convenient width and of maximum sharpness, the sodium flame was removed and the lamp again substituted. The screw ''m'' was then slowly turned till the bands reappeared. They were then of course colored, except the central band, which was nearly black."Shankland (1964) wrote concerning the 1881 experiment, p. 20: "''The interference fringes were found by first using a sodium light source and after adjustment for maximum visibility, the source was changed to white light and the colored fringes then located. White-light fringes were employed to facilitate observation of shifts in position of the interference pattern.''" And concerning the 1887 experiment, p. 31: "''With this new interferometer, the magnitude of the expected shift of the white-light interference pattern was 0.4 of a fringe as the instrument was rotated through an angle of 90° in the horizontal plane. (The corresponding shift in the Potsdam interferometer had been 0.04 fringe.)''" More importantly, in a white light interferometer, any subsequent "fringe jump" (differential pathlength shift of one wavelength) would always be detected.


Applications

The Michelson interferometer configuration is used in a number of different applications.


Fourier transform spectrometer

Fig. 5 illustrates the operation of a Fourier transform spectrometer, which is essentially a Michelson interferometer with one mirror movable. (A practical Fourier transform spectrometer would substitute corner cube reflectors for the flat mirrors of the conventional Michelson interferometer, but for simplicity, the illustration does not show this.) An interferogram is generated by making measurements of the signal at many discrete positions of the moving mirror. A
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
converts the interferogram into an actual spectrum. Fourier transform spectrometers can offer significant advantages over dispersive (i.e., grating and prism) spectrometers under certain conditions. (1) The Michelson interferometer's detector in effect monitors all wavelengths simultaneously throughout the entire measurement. When using a noisy detector, such as at infrared wavelengths, this offers an increase in
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in de ...
while using only a single detector element; (2) the interferometer does not require a limited aperture as do grating or prism spectrometers, which require the incoming light to pass through a narrow slit in order to achieve high spectral resolution. This is an advantage when the incoming light is not of a single spatial mode. For more information, see
Fellgett's advantage Fellgett's advantage or the multiplex advantage is an improvement in signal-to-noise ratio (SNR) that is gained when taking multiplexed measurements rather than direct measurements. The name is derived from P. B. Fellgett, who first made the observ ...
.


Twyman–Green interferometer

The Twyman–Green interferometer is a variation of the Michelson interferometer used to test small optical components, invented and patented by Twyman and Green in 1916. The basic characteristics distinguishing it from the Michelson configuration are the use of a monochromatic point light source and a collimator. Michelson (1918) criticized the Twyman–Green configuration as being unsuitable for the testing of large optical components, since the available light sources had limited
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves di ...
. Michelson pointed out that constraints on geometry forced by the limited coherence length required the use of a reference mirror of equal size to the test mirror, making the Twyman–Green impractical for many purposes. Decades later, the advent of laser light sources answered Michelson's objections. The use of a figured reference mirror in one arm allows the Twyman–Green interferometer to be used for testing various forms of optical component, such as lenses or telescope mirrors. Fig. 6 illustrates a Twyman–Green interferometer set up to test a lens. A point source of monochromatic light is expanded by a diverging lens (not shown), then is collimated into a parallel beam. A convex spherical mirror is positioned so that its center of curvature coincides with the focus of the lens being tested. The emergent beam is recorded by an imaging system for analysis.


Laser unequal path interferometer

The "LUPI" is a Twyman–Green interferometer that uses a coherent laser light source. The high
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves di ...
of a laser allows unequal path lengths in the test and reference arms and permits economical use of the Twyman–Green configuration in testing large optical components. A similar scheme has been used by Tajammal M in his PhD thesis (Manchester University UK, 1995) to balance two arms of an LDA system. This system used fibre optic direction coupler.


Stellar measurements

The
Michelson stellar interferometer The Michelson stellar interferometer is one of the earliest astronomical interferometers built and used. The interferometer was proposed by Albert A. Michelson in 1890, following a suggestion by Hippolyte Fizeau. The first such interferometer b ...
is used for measuring the diameter of stars. In 1920, Michelson and Francis G. Pease used it to measure the diameter of
Betelgeuse Betelgeuse is a red supergiant of spectral type M1-2 and one of the largest stars visible to the naked eye. It is usually the tenth-brightest star in the night sky and, after Rigel, the second-brightest in the constellation of O ...
, the first time the diameter of a star other than the sun was measured.


Gravitational wave detection

Michelson interferometry is the leading method for the direct detection of gravitational waves. This involves detecting tiny strains in space itself, affecting two long arms of the interferometer unequally, due to a strong passing gravitational wave. In 2015 the first detection of
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside i ...
was accomplished using the two Michelson interferometers, each with 4 km arms, which comprise the Laser Interferometer Gravitational-Wave Observatory. This was the first experimental validation of gravitational waves, predicted by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's General Theory of Relativity. With the addition of the
Virgo interferometer The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumen ...
in Europe, it became possible to calculate the direction from which the gravitational waves originate, using the tiny arrival-time differences between the three detectors.''Nature'', "Dawn of a new astronomy", M. Coleman Miller, Vol 531, issue 7592, page 40, 3 March 2016 In 2020,
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area, the List of countries and dependencies by population, second-most populous ...
was constructing a fourth Michelson interferometer for gravitational wave detection.


Miscellaneous applications

Fig. 7 illustrates use of a Michelson interferometer as a tunable narrow band filter to create dopplergrams of the Sun's surface. When used as a tunable narrow band filter, Michelson interferometers exhibit a number of advantages and disadvantages when compared with competing technologies such as
Fabry–Pérot interferometer In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is n ...
s or
Lyot filter A Lyot filter, named for its inventor Bernard Lyot, is a type of optical filter that uses birefringence to produce a narrow passband of transmitted wavelengths. Lyot filters are often used in astronomy, particularly for solar astronomy. A Lyot ...
s. Michelson interferometers have the largest field of view for a specified wavelength, and are relatively simple in operation, since tuning is via mechanical rotation of waveplates rather than via high voltage control of piezoelectric crystals or lithium niobate optical modulators as used in a Fabry–Pérot system. Compared with Lyot filters, which use birefringent elements, Michelson interferometers have a relatively low temperature sensitivity. On the negative side, Michelson interferometers have a relatively restricted wavelength range, and require use of prefilters which restrict transmittance. The reliability of Michelson interferometers has tended to favor their use in space applications, while the broad wavelength range and overall simplicity of Fabry–Pérot interferometers has favored their use in ground-based systems. Another application of the Michelson interferometer is in
optical coherence tomography Optical coherence tomography (OCT) is an imaging technique that uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue). It is used for medica ...
(OCT), a medical imaging technique using low-coherence interferometry to provide tomographic visualization of internal tissue microstructures. As seen in Fig. 8, the core of a typical OCT system is a Michelson interferometer. One interferometer arm is focused onto the tissue sample and scans the sample in an X-Y longitudinal raster pattern. The other interferometer arm is bounced off a reference mirror. Reflected light from the tissue sample is combined with reflected light from the reference. Because of the low coherence of the light source, interferometric signal is observed only over a limited depth of sample. X-Y scanning therefore records one thin optical slice of the sample at a time. By performing multiple scans, moving the reference mirror between each scan, an entire three-dimensional image of the tissue can be reconstructed. Recent advances have striven to combine the nanometer phase retrieval of coherent interferometry with the ranging capability of low-coherence interferometry. Others applications include delay line interferometer which convert phase modulation into amplitude modulation in
DWDM In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light. This techni ...
networks, the characterization of high-frequency circuits, and low-cost THz power generation.


Atmospheric and space applications

The Michelson Interferometer has played an important role in studies of the
upper atmosphere Upper atmosphere is a collective term that refers to various layers of the atmosphere of the Earth above the troposphere and corresponding regions of the atmospheres of other planets, and includes: * The mesosphere, which on Earth lies between th ...
, revealing temperatures and winds, employing both space-borne, and ground-based instruments, by measuring the Doppler widths and shifts in the spectra of airglow and aurora. For example, the Wind Imaging Interferometer, WINDII, on the Upper Atmosphere Research Satellite, UARS, (launched on September 12, 1991) measured the global wind and temperature patterns from 80 to 300 km by using the visible airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument was an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that imaged the airglow limb through the interferometer. A sequence of phase-stepped images was processed to derive the wind velocity for two orthogonal view directions, yielding the horizontal wind vector. The principle of using a polarizing Michelson Interferometer as a narrow band filter was first described by Evans who developed a birefringent photometer where the incoming light is split into two orthogonally polarized components by a polarizing beam splitter, sandwiched between two halves of a Michelson cube. This led to the first polarizing wide-field Michelson interferometer described by Title and Ramsey which was used for solar observations; and led to the development of a refined instrument applied to measurements of oscillations in the sun's atmosphere, employing a network of observatories around the Earth known as the Global Oscillations Network Group (GONG). The Polarizing Atmospheric Michelson Interferometer, PAMI, developed by Bird et al., and discussed in ''Spectral Imaging of the Atmosphere'', combines the polarization tuning technique of Title and Ramsey with the Shepherd ''et al.'' technique of deriving winds and temperatures from emission rate measurements at sequential path differences, but the scanning system used by PAMI is much simpler than the moving mirror systems in that it has no internal moving parts, instead scanning with a polarizer external to the interferometer. The PAMI was demonstrated in an observation campaign where its performance was compared to a Fabry–Pérot spectrometer, and employed to measure E-region winds. More recently, the Helioseismic and Magnetic Imager ( HMI), on the Solar Dynamics Observatory, employs two Michelson Interferometers with a polarizer and other tunable elements, to study solar variability and to characterize the Sun's interior along with the various components of magnetic activity. HMI takes high-resolution measurements of the longitudinal and vector magnetic field over the entire visible disk thus extending the capabilities of its predecessor, the
SOHO Soho is an area of the City of Westminster, part of the West End of London. Originally a fashionable district for the aristocracy, it has been one of the main entertainment districts in the capital since the 19th century. The area was deve ...
's MDI instrument (See Fig. 9). HMI produces data to determine the interior sources and mechanisms of solar variability and how the physical processes inside the Sun are related to surface magnetic field and activity. It also produces data to enable estimates of the coronal magnetic field for studies of variability in the extended solar atmosphere. HMI observations will help establish the relationships between the internal dynamics and magnetic activity in order to understand solar variability and its effects. In one example of the use of the MDI, Stanford scientists reported the detection of several sunspot regions in the deep interior of the Sun, 1–2 days before they appeared on the solar disc. The detection of sunspots in the solar interior may thus provide valuable warnings about upcoming surface magnetic activity which could be used to improve and extend the predictions of space weather forecasts.


Technical topics


Step-phase interferometer

This is a Michelson interferometer in which the mirror in one arm is replaced with a Gires–Tournois etalon. The highly dispersed wave reflected by the Gires–Tournois etalon interferes with the original wave as reflected by the other mirror. Because the phase change from the Gires–Tournois etalon is an almost step-like function of wavelength, the resulting interferometer has special characteristics. It has an application in fiber-optic
communications Communication (from la, communicare, meaning "to share" or "to be in relation with") is usually defined as the transmission of information. The term may also refer to the message communicated through such transmissions or the field of inquir ...
as an optical interleaver. Both mirrors in a Michelson interferometer can be replaced with Gires–Tournois etalons. The step-like relation of phase to wavelength is thereby more pronounced, and this can be used to construct an asymmetric optical interleaver.


Phase-conjugating interferometry

The reflection from phase-conjugating mirror of two light beams inverses their phase difference \Delta \varphi to the opposite one -\Delta \varphi. For this reason the interference pattern in twin-beam interferometer changes drastically. Compared to conventional Michelson interference curve with period of half-wavelength \lambda/2: I(\Delta L) \sim + \gamma(\Delta L) \cos (2k\Delta L)/math>, where \gamma(\Delta L) is second-order correlation function, the interference curve in phase-conjugating interferometer has much longer period defined by frequency shift \delta \omega=\Delta k c of reflected beams: I(\Delta L) \sim +_[\gamma(\Delta_L)+0.25 \cos_(\Delta_k\Delta_L).html" ;"title="gamma(\Delta_L)+0.25.html" ;"title="+ [\gamma(\Delta L)+0.25">+ [\gamma(\Delta L)+0.25 \cos (\Delta k\Delta L)">gamma(\Delta_L)+0.25.html" ;"title="+ [\gamma(\Delta L)+0.25">+ [\gamma(\Delta L)+0.25 \cos (\Delta k\Delta L)/math>, where visibility curve is nonzero when optical path difference \Delta L > \ell_ exceeds coherence length of light beams. The nontrivial features of phase fluctuations in optical phase-conjugating mirror had been studied via Michelson interferometer with two independent PC-mirrors . The phase-conjugating Michelson interferometry is a promising technology for coherent summation of laser amplifiers . Constructive interference in an array containing N/2 beamsplitters of N laser beams synchronized by phase conjugation may increase the brightness of amplified beams as N^2.


See also

* List of types of interferometers * LIGO Laser Interferometer Gravitational-Wave Observatory * NPOI * GEO600 * VIRGO *
KAGRA The Kamioka Gravitational Wave Detector (KAGRA), is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. KAGRA is a Michelson interferometer that is isolated from external disturbances: its m ...


Notes


References


External links


Diagrams of Michelson interferometers

Application of a step-phase interferometer in optical communication

A satellite view of the VIRGO interferometer


{{Webarchive, url=https://web.archive.org/web/20111004135124/http://fisica.fe.up.pt/michelson/index.html , date=2011-10-04 Interferometers