Maya astronomy
   HOME

TheInfoList



OR:

Maya astronomy is the study of the Moon, planets, Milky Way, Sun, and astronomical phenomena by the
Precolumbian In the history of the Americas, the pre-Columbian era spans from the original settlement of North and South America in the Upper Paleolithic period through European colonization, which began with Christopher Columbus's voyage of 1492. Usually, t ...
Maya Civilization The Maya civilization () of the Mesoamerican people is known by its ancient temples and glyphs. Its Maya script is the most sophisticated and highly developed writing system in the pre-Columbian Americas. It is also noted for its art, ...
of
Mesoamerica Mesoamerica is a historical region and cultural area in southern North America and most of Central America. It extends from approximately central Mexico through Belize, Guatemala, El Salvador, Honduras, Nicaragua, and northern Costa Rica. Wit ...
. The
Classic A classic is an outstanding example of a particular style; something of lasting worth or with a timeless quality; of the first or highest quality, class, or rank – something that exemplifies its class. The word can be an adjective (a ''c ...
Maya in particular developed some of the most accurate pre-telescope astronomy in the world, aided by their fully developed writing system and their positional numeral system, both of which are fully indigenous to Mesoamerica. The Classic Maya understood many astronomical phenomena: for example, their estimate of the length of the
synodic month In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month. Variations In Shona, Middle Eastern, and Euro ...
was more accurate than Ptolemy's, and their calculation of the length of the tropical solar year was more accurate than that of the Spanish when the latter first arrived. Many temples from the
Maya architecture Maya architecture spans several thousands of years, several eras of political change, and architectural innovation before the Spanish colonization of the Americas. Often, the buildings most dramatic and easily recognizable as creations of the Ma ...
have features oriented to celestial events.


European and Maya calendars


European calendar

In 46 BC
Julius Caesar Gaius Julius Caesar (; ; 12 July 100 BC – 15 March 44 BC), was a Roman general and statesman. A member of the First Triumvirate, Caesar led the Roman armies in the Gallic Wars before defeating his political rival Pompey in a civil war, an ...
decreed that the year would be made up of twelve months of approximately 30 days each to make a year of 365 days and a leap year of 366 days. The civil year had 365.25 days. This is the
Julian calendar The Julian calendar, proposed by Roman consul Julius Caesar in 46 BC, was a reform of the Roman calendar. It took effect on , by edict. It was designed with the aid of Greek mathematicians and astronomers such as Sosigenes of Alexandri ...
. The solar year has 365.2422 days and by 1582 there was an appreciable discrepancy between the
winter solstice The winter solstice, also called the hibernal solstice, occurs when either of Earth's poles reaches its maximum tilt away from the Sun. This happens twice yearly, once in each hemisphere (Northern and Southern). For that hemisphere, the winter ...
and Christmas and the vernal equinox and Easter.
Pope Gregory XIII Pope Gregory XIII ( la, Gregorius XIII; it, Gregorio XIII; 7 January 1502 – 10 April 1585), born Ugo Boncompagni, was head of the Catholic Church and ruler of the Papal States from 13 May 1572 to his death in April 1585. He is best known for ...
, with the help of Italian astronomer
Aloysius Lilius Aloysius Lilius (c. 1510 – 1576), also variously referred to as Luigi Lilio or Luigi Giglio, was an Italian doctor, astronomer, philosopher and chronologist, and also the "primary author" who provided the proposal that (after modifications) be ...
(Luigi Lilio), reformed this system by abolishing the days October 5 through October 14, 1582. This brought the civil and tropical years back into line. He also missed three days every four centuries by decreeing that centuries are only leap years if they are evenly divisible by 400. So for example 1700, 1800, and 1900 are not leap years but 1600 and 2000 are. This is the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
. Astronomers use the Julian/Gregorian calendar. Dates before 46 BC are converted to the Julian calendar. This is the
proleptic Julian calendar The proleptic Julian calendar is produced by extending the Julian calendar backwards to dates preceding AD 8 when the quadrennial leap year stabilized. The leap years that were actually observed between the implementation of the Julian calendar in ...
. Astronomical calculations return a year zero and years before that are negative numbers. This is astronomical dating. There is no year zero in historical dating. In historical dating the year 1 BC is followed by the year 1 so for example, the year −3113 (astronomical dating) is the same as 3114 BC (historical dating). Many
mayanist A Mayanist ( es, mayista) is a scholar specialising in research and study of the Mesoamerican pre-Columbian Maya civilisation. This discipline should not be confused with Mayanism, a collection of New Age beliefs about the ancient Maya. May ...
s convert Maya calendar dates into the
proleptic Gregorian calendar The proleptic Gregorian calendar is produced by extending the Gregorian calendar backward to the dates preceding its official introduction in 1582. In nations that adopted the Gregorian calendar after its official and first introduction, dates occ ...
. In this calendar, Julian calendar dates are revised as if the Gregorian calendar had been in use before October 15, 1582. These dates must be converted to astronomical dates before they can be used to study Maya astronomy because astronomers use the Julian/Gregorian calendar. Proleptic Gregorian dates vary substantially from astronomical dates. For example, the mythical creation date in the Maya calendar is August 11, 3114 BC in the
proleptic Gregorian calendar The proleptic Gregorian calendar is produced by extending the Gregorian calendar backward to the dates preceding its official introduction in 1582. In nations that adopted the Gregorian calendar after its official and first introduction, dates occ ...
and September 6, −3113 astronomical.


Julian days

Astronomers describe time as a number of days and a fraction of a day since noon January 1, −4712
Greenwich Mean Time Greenwich Mean Time (GMT) is the mean solar time at the Royal Observatory in Greenwich, London, counted from midnight. At different times in the past, it has been calculated in different ways, including being calculated from noon; as a c ...
. The
Julian day The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
starts at noon because they are interested in things that are visible at night. The number of days and fraction of a day elapsed since this time is a Julian day. The whole number of days elapsed since this time is a
Julian day number The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
.


Maya calendars

There are three main Maya calendars: The
Long Count Long count or slow count is a term used in boxing. When a boxer is knocked down in a fight, the referee will count over them and the boxer must rise to their feet, unaided, by the count of ten or else deemed to have been knocked out. A long count ...
is a count of days. There are examples of Long Counts with many places but most of them give five places since the mythical creation date – 13.0.0.0.0. The Tzolk'in is a 260-day calendar made up of a day from one to 13 and 20 day names. By pairing the numbers with the 20 names, that leaves 260 unique days with every combination of numbers/names happening once. This calendar was of the most sacred to the Maya, and was used as an almanac to determine farming cycles, and for religious practices to specify dates for ceremonies. These 260 days were each considered individual gods and goddesses that were not persuaded by a higher power. Unlike the 365 day year, this 260 day year was used less for counting/calculations, and more to arrange tasks, celebrations, ceremonies, etc. In some present day Maya communities, this 260 day almanac is still used, mostly for religious practices. The Haab' is a 365-day year made up of a day of zero to 19 and 18 months with five unlucky days at the end of the year. When the Tzolk'in and Haab' are both given, the date is called a
calendar round The Maya calendar is a system of calendars used in pre-Columbian Mesoamerica and in many modern communities in the Guatemalan highlands, Veracruz, Oaxaca and Chiapas, Mexico. The essentials of the Maya calendar are based upon a system which had ...
. The same calendar round repeats every 18,980 days – approximately 52 years. The calendar round on the mythical starting date of this creation was 4 Ahau 8 Kumk'u. When this date occurs again it is called a calendar round completion. A Year Bearer is a Tzolk'in day name that occurs on the first day of the Haab'. A number of different year bearer systems were in use in Mesoamerica.


Correlating the Maya and European calendar

The Maya and European calendars are correlated by using the Julian day number of the starting date of the current creation — 13.0.0.0.0, 4 Ajaw, 8 Kumk'u. The Julian day number of noon on this day was 584,283. This is the GMT correlation.


Sources of astronomical inscriptions


Maya codices

At the time of the Spanish conquest the Maya had many books. These were painted on folding bark cloth. The Spanish conquistadors and Catholic priests destroyed them whenever they found them. The most infamous example of this was the burning of a large number of these in
Maní, Yucatán Maní is a small city in Maní Municipality in the central region of the Yucatán Peninsula, in the Mexican state of Yucatán. It is about 100 km to the south south-east of Mérida, Yucatán, some 16 km east of Ticul. The village of Ti ...
by
Bishop Diego de Landa Diego de Landa Calderón, O.F.M. (12 November 1524 – 29 April 1579) was a Spanish Franciscan bishop of the Roman Catholic Archdiocese of Yucatán. Many historians criticize his campaign against idolatry. In particular, he burned almost a ...
in July 1562. Only four of these codices exist today. These are the
Dresden Dresden (, ; Upper Saxon: ''Dräsdn''; wen, label= Upper Sorbian, Drježdźany) is the capital city of the German state of Saxony and its second most populous city, after Leipzig. It is the 12th most populous city of Germany, the fourth ...
,
Madrid Madrid ( , ) is the capital and most populous city of Spain. The city has almost 3.4 million inhabitants and a metropolitan area population of approximately 6.7 million. It is the second-largest city in the European Union (EU), and ...
,
Paris Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. Si ...
and
Grolier Grolier was one of the largest American publishers of general encyclopedias, including '' The Book of Knowledge'' (1910), ''The New Book of Knowledge'' (1966), ''The New Book of Popular Science'' (1972), ''Encyclopedia Americana'' (1945), ''Acad ...
codices. The Dresden Codex is an astronomical Almanac. The Madrid Codex mainly consists of almanacs and horoscopes that were used to help Maya priests in the performance of their ceremonies and divinatory rituals. It also contains astronomical tables, although less than are found in the other three surviving Maya codices. The Paris Codex contains prophecies for tuns and katuns (see
Mesoamerican Long Count calendar The Mesoamerican Long Count calendar is a non-repeating, vigesimal (base 20) and octodecimal (base 18) calendar used by several pre-Columbian Mesoamerican cultures, most notably the Maya. For this reason, it is often known as the May ...
), and a Maya zodiac. The Grolier Codex is a Venus almanac.
Ernst Förstemann Ernst Wilhelm Förstemann (Danzig, 18 September 1822 – Charlottenburg, 4 November 1906) was a German historian, mathematician, doctor of linguistics, librarian, and director of the Saxon State Library (german: Sächsische Landesbibliothek) in D ...
, a librarian at the Royal Public Library of Dresden, recognized that the
Dresden Codex The ''Dresden Codex'' is a Maya book, which was believed to be the oldest surviving book written in the Americas, dating to the 11th or 12th century. However, in September 2018 it was proven that the Maya Codex of Mexico, previously known as t ...
is an astronomical almanac and was able to decipher much of it in the early 20th century.


Maya monuments


Mayan stelae

The Maya erected a large number of stelae. These had a Long Count date. They also included a
supplementary series The term supplementary can refer to: * Supplementary angles * Supplementary Benefit, a former benefit payable in the United Kingdom * Supplementary question A question time in a parliament occurs when members of the parliament ask questions of ...
. The supplementary series included lunar data – the number of days elapsed in the current lunation, the length of the lunation and the number of the lunation in a series of six. Some of them included an 819-day count which may be a count of the days in a cycle associated with
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
. See Jupiter and Saturn below. Some other astronomical events were recorded, for example the eclipse warning on Quirigua Stela E – 9.17.0.0.0. A partial solar eclipse was visible in Mesoamerica two days later on 9.17.0.0.2 – Friday January 18, 771.


Calendric inscriptions

Many Mayan temples were inscribed with hieroglyphic texts. These contain both calendric and astronomical content.


Methods of astronomical observation

Maya astronomy was naked-eye astronomy based on the observations of the
azimuth An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematical ...
s of the rising and setting of heavenly bodies. City planning and alignment was often arranged in line with astronomical paths and events. The Maya also believed that the will and actions of gods could be interpreted in the alignment of the planets and stars. Many wells located in Mayan ruins were also observatories of the
zenith The zenith (, ) is an imaginary point directly "above" a particular location, on the celestial sphere. "Above" means in the vertical direction ( plumb line) opposite to the gravity direction at that location ( nadir). The zenith is the "high ...
al passage of the sun. One of the most studied sites for the topic of Mayan astronomy is the El Caracol at
Chichen Itza Chichen Itza , es, Chichén Itzá , often with the emphasis reversed in English to ; from yua, Chiʼchʼèen Ìitshaʼ () "at the mouth of the well of the Itza people" was a large pre-Columbian city built by the Maya people of the Termin ...
. The Caracol is an observatory aligned to follow the path of Venus through the year. The grand staircase leading to the once cylindrical structure deviates 27.5 degrees from the alignment of the surrounding buildings to align with the northern extreme of Venus; the northeast-southwest diagonal of the site aligns with the sunrise of the summer solstice and the sunset of the winter solstice.


Astronomical observations


Solar

The Maya were aware of the solstices and equinoxes. This is demonstrated in building alignments. More important to them were zenithal passage days. In the
Tropics The tropics are the regions of Earth surrounding the Equator. They are defined in latitude by the Tropic of Cancer in the Northern Hemisphere at N and the Tropic of Capricorn in the Southern Hemisphere at S. The tropics are also refer ...
the Sun passes directly overhead twice each year. Many known structures in Mayan temples were built to observe this. An example of such temples is the observatory at Xochicalco. The observatory is an underground chamber with a hole in the ceiling. Two days of the year on May 15 and July 29, the sun would directly illuminate an illustration of the sun on the floor. Munro S. Edmonson studied 60 mesoamerican calendars and found remarkable consistency in the calendars, except for a number of different year bearer systems. He thought that these different year bearers were based on the solar years in which they were initiated. The sun was very important in the Mayan culture. The Mayan sun god was Kinich Ahau, one of the Mayan creator gods. Kinich Ahau would shine in the sky all day before being believed to transform himself into a jaguar at night to pass through Xibalba, the Mayan underworld. The Maya were aware of the fact that the 365-day Haab' differs from the Tropical year by about 0.25 days per year. A number of different intervals are given on Maya monuments that can be used to approximate the tropical year. The most accurate of these is that the tropical year exceeds the length of the 365 day Haab' by one day every 1,508 days. The occurrence of a particular solstice on a given date in the Haab' will repeat after the passage of 1,508 365-day Haab' years. The Haab' will lose one day every 1,508 days and it will take 1,508 Haab' years to lose one Haab' year. So 365 x 1,508 = 365.2422 x 1,507 or 1,508 Haab' years = 1,507 Tropical years of 365.2422 days.


The Tropical Year in the Maya codices

The solstices and equinoxes are described in many almanacs and tables in the Maya codices. There are three seasonal tables and four related almanacs in the Dresden Codex. There are five solar almanacs in the Madrid Codex and possibly an almanac in the Paris codex. Many of these can be dated to the second half of the ninth and first half of the tenth centuries. The Dresden Codex The upper and lower seasonal tables (pages 61–69) unify the Haab', the solstices and equinoxes, the eclipse cycle and the year bearer (0 Pop). The table refers to the middle of the tenth century but includes more than a dozen other base dates from the fourth to the eleventh centuries. The rainmaking almanac (pages 29b to 30b) refers to the Haab' and the tropical year. During the year in question the summer solstice preceded the Half Year by a few days. This confirms that the year was either 857 or 899. It also describes a four-part rain-making ceremony similar to Yucatecan ceremonies known from modern ethnography. The Spliced Table (pages 31.a to 39.a) is the combination of two separate tables. It includes rituals including those of the Uayab', the Half Year, agricultural and meteorological matters. It contains a reference to the Half Year, skybands, two of which contain Venus glyphs. The table has four base dates; two in the fourth century, one in the ninth and one in the tenth century. Three of these are also base dates in the seasonal table The Burner Almanac (pages 33c to 39c) contains the stations of the Burner cycle, a system for dividing the Tzolk'in that is known from the colonial history of Yucatán. The almanac also refers to eclipse seasons and stations of the tropical year. This almanac refers to a few years before and just after 1520, when the codex may have already been in the hands of the Spanish. The Conjugal Almanac (pages 22c to 23c) is one of a series of almanacs dealing with conjugal relationships between pairs of deities. It may contain a reference to the vernal equinox. In addition to the astronomical tables preserved in the Dresden codex, there are illustrations of different deities and their relation to the positions of the planets. The Madrid Codex Pages 10b,c – 11b, c of the Madrid Codex contain two almanacs similar to the seasonal tables of the Dresden Codex. In the lower almanac the Half Year of the Haab' occurred on the same day as the summer solstice, dating this event to the year 925. The long almanac (pages 12b to 18b) includes iconography of the Haab, abundant rain and astronomy. The almanac contains several eclipse glyphs, spaced at correct eclipse intervals. The eclipse and calendar dates allow one to date the almanac to the year 924. The combination of this almanac and the seasonal almanacs in this codex are the functional equivalent of the two seasonal almanacs in the Dresden Codex. Pages 58.c to 62.c are a tropical-year almanac. It is an 1820-day almanac made up of 20 rows of 91 days each. One of the captions associates an equinox with a glyph for Venus. This dates the almanac to a date between 890 and 962. The Bird Almanac (pages 26c to 27c) has an unusual structure (5 x 156 = 780 days). One of its pictures is probably a reference to the vernal equinox. This almanac can't be dated. The Paris Codex The God C almanacs (pages 15a, b to 18a, b) are very incomplete and partially effaced. It is impossible to ascertain their lengths or dates. Two known Haab' rituals can be recognized. It's possible that the God C almanacs are equivalent to the seasonal tables in the Dresden Codex and the God C almanacs in the Paris Codex The Books of Chilam Balam The Book of Chilam Balam specifically refers to the Half Year, the solstices and equinoxes.


Building alignments

Anthony Aveni and Horst Hartung published an extensive study of building alignments in the Maya area. They found that most orientations occur in a zone 8°-18° east of north with many at 14° and 25° east of north. He believes that the 25° south of east orientations are oriented to the position on the horizon of sunrise on the winter solstice and that the 25° north of west orientations are aligned with sunset on the summer solstice. Further systematic research has led to the recognition of several orientation groups, most of which refer to agriculturally significant sunrise and sunset dates. Two diagonal alignments across the platform of the base Caracol at Chichén Itzá, are aligned with the azimuth of the sunrise on the summer solstice and an alignment perpendicular to the base of the lower platform corresponds to the azimuth of the sunset on the summer solstice. One of the windows in the round tower provides a narrow slit for viewing the sunset on the equinoxes. The Caracol was also used to observe the zenithal passage of the Sun. An alignment perpendicular to the base of the upper platform and one from the center of a doorway above the symbolate monument are aligned with the azimuth of the sunset on zenith passage days. Other solar observatories are at
Uaxactun Uaxactun (pronounced ) is an ancient sacred place of the Maya civilization, located in the Petén Basin region of the Maya lowlands, in the present-day department of Petén, Guatemala. The site lies some north of the major center of Tikal. T ...
,
Oxkintok Oxkintok is a pre-Columbian Maya archaeological site in the Puuc region of Yucatán state, in southeastern Mexico. Geography and climate The site of Oxkintok is located on the northwestern tip of the Yucatán Peninsula, and is situated unchar ...
and
Yaxchilan Yaxchilan () is an ancient Maya city located on the bank of the Usumacinta River in the state of Chiapas, Mexico. In the Late Classic Period Yaxchilan was one of the most powerful Maya states along the course of the Usumacinta River, with Pi ...
.


Lunar

Many inscriptions include data on the number of days elapsed in the current lunation, the number of days in the current lunation and the position of the lunation in a cycle of six lunations. Modern astronomers consider conjunction of Sun and Moon (when the Sun and Moon have the same
ecliptic longitude The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System b ...
) to be the New Moon. The Maya counted the zero day of the lunar cycle as either the first day when one could no longer see the waning crescent Moon or the first day when one could see the thin crescent waxing Moon (the Palenque system). Using this system, the zero date of the lunar count is about two days after astronomical new Moon. Aveni and Fuls analysed a large number of these inscription and found strong evidence for the Palenque system. However Fuls found "…at least two different methods and formulas were used to calculate the moon's age and position in the six-month cycle…"


Building alignments

A number of orientations to lunar extremes (standstill positions on the horizon) have been identified. Most of them are concentrated on the Northeast Coast of the Yucatan peninsula, where the cult of goddess Ixchel, associated with the Moon, is known to have been important.


Mercury

Pages 30c-33c of the Dresden codex are a Venus-Mercury almanac. The 2340-day length of the Venus-Mercury almanac is a close approximation of the synodic periods of Venus (4 x 585) and Mercury (20 x 117). The Almanac also refers to the
summer solstice The summer solstice, also called the estival solstice or midsummer, occurs when one of Earth's poles has its maximum tilt toward the Sun. It happens twice yearly, once in each hemisphere (Northern and Southern). For that hemisphere, the summer ...
and the Haab' uayeb ceremonies for the tenth century AD.Bricker and Bricker 2011 pp. 235–245


Venus

Venus was extremely important to the people of Mesoamerica. Its cycles were carefully tracked by the Maya. The Maya associated the planet Venus with war, and battles would be arranged to align with the movements of Venus. The Maya would also sacrifice captured enemies according to Venus' position in the sky. Because Venus is closer to the Sun than the Earth, it passes the Earth during its orbit. When it passes behind the Sun at superior conjunction and between the Earth and the Sun at inferior conjunction it is invisible. Particularly dramatic is the disappearance as evening star and its reappearance as the morning star approximately eight days later, after inferior conjunction. The cycle of Venus is 583.92 days long but it varies between 576.6 and 588.1 days. Astronomers calculate heliacal phenomena (first and last visibility of rising or setting bodies) using the ''arcus visionis'' – the difference in altitude between the body and the center of the Sun at the time of geometric rising or setting of the body, not including the 34 arc minutes of refraction that allows one to see a body before its geometric rise or the 0.266,563,88... degree semidiameter of the sun. Atmospheric phenomena like extinction are not considered. The required arcus visionis varies with the brightness of the body. Because Venus varies in size and has phases, a different arcus visionus is used for the four different rising and settings. Meeus, Salvo De Meis, Carl Schoch and others use the following values for calculating this:
Rising as morning star: the first morning with an arcus visionis greater than 5.7° at sunrise
Setting as morning star: the last morning with an arcus visionis greater than 6.0° at sunrise
Rising as evening star: the first evening with an arcus visionis greater than 6.0° at sunset
Setting as evening star: the last evening with an arcus visionis greater than 5.2° at sunset
Dresden Codex The
Dresden codex The ''Dresden Codex'' is a Maya book, which was believed to be the oldest surviving book written in the Americas, dating to the 11th or 12th century. However, in September 2018 it was proven that the Maya Codex of Mexico, previously known as t ...
pages 24 and 46 to 50 are a Venus almanac. Bricker and Bricker write: "The Venus table tracks the synodic cycle of Venus by listing the formal or canonical dates of planet's first and last appearances as 'morning star' and 'evening star'. The emphasis, both iconographic and textual, is on first appearance as morning star (heliacal rise), the dates of which are given quite accurately, This first appearance was regarded as a time of danger and the major purpose of the Venus table was to provide warnings of such dangerous days. The table lists the tzolkin days for the four appearance/disappearance events during each of the 65 consecutive Venus cycles, a period of approximately 104 years. The table was used at least four times with different starting dates, from the tenth through the fourteenth centuries AD." Because the Maya canonical period was 584 days and the synodic period is 583.92 days, an error accumulated in the table over time. Possible correction schemes from the codex are discussed by Aveni and Bricker and Bricker. The Dresden Codex pages 8–59 is a planetary table that commensurates the synodic cycles of Mars and Venus. There are four possible base dates, two in the seventh and two in the eighth centuries.Bricker and Bricker 2011 pp. 469–485 Pages 30c-33c of the Dresden codex are a Venus-Mercury almanac. The 2340-day length of the Venus-Mercury almanac is a close approximation of the synodic periods of Venus (4 x 585) and Mercury (20 x 117). The Almanac also refers to the
summer solstice The summer solstice, also called the estival solstice or midsummer, occurs when one of Earth's poles has its maximum tilt toward the Sun. It happens twice yearly, once in each hemisphere (Northern and Southern). For that hemisphere, the summer ...
and the Haab' uayeb ceremonies for the tenth century AD. The Grolier Codex The
Grolier Codex The ''Maya Codex of Mexico'' (MCM) is a Maya screenfold codex manuscript of a pre-Columbian type. Long known as the ''Grolier Codex'' or ''Sáenz Codex'', in 2018 it was officially renamed the ''Códice Maya de México'' (CMM) by the National ...
lists Tzolk'in dates for the appearance/disappearances of Venus for half of the Venus cycles in the Dresden codex. These are the same dates listed in Dresden. Building Alignments The Caracol at Chichen Itza contains the remains of windows through which the extreme elongations of the planet can be seen. Four of the main orientations of the lower platform mark the points of the maximum horizontal displacement of the planet during the year. Two alignments of the surviving windows in the upper tower align with the extreme positions of the planet at its greatest north and south declinations. Building 22 at Copan is called the Venus temple because Venus symbols are inscribed on it. It has a narrow window that can be used to observe Venus on certain dates. The Governors Palace at
Uxmal Uxmal (Yucatec Maya: ''Óoxmáal'' ) is an ancient Maya city of the classical period located in present-day Mexico. It is considered one of the most important archaeological sites of Maya culture, along with Palenque, Chichen Itza and Calakmul ...
differs 30° from the northeast alignment of the other buildings. The door faces southeast. About 4.5 km from the door is a pyramidal hill, from where Venus northerly extremes could be observed over the Governor's Palace. The cornices of the building have hundreds of masks of
Chaac Chaac (also spelled Chac or, in Classic Mayan, Chaahk ) is the name of the Maya god of rain, thunder, and lighting. With his lightning axe, Chaac strikes the clouds, causing them to produce thunder and rain. Chaac corresponds to Tlaloc among ...
with Venus symbols under the eyelids. Inscriptions De Meis has a table of 14 Long Count inscriptions that record heliacal phenomena of Venus. De Meis has a table of 11 Long Counts that record the greatest elongation of Venus. The
Bonampak Bonampak (known anciently as ''Ak'e'' or, in its immediate area as ''Usiij Witz'', 'Vulture Hill') is an ancient Maya archaeological site in the Mexican state of Chiapas. The site is approximately south of the larger site of the people Yaxchilan, ...
murals depict the victory of king Chaan Muan with his enemies lying down, pleading for their lives on a date which was the heliacal rising of Venus and a zenith passage of the Sun.Aveni 1993 p.272 – 9.18.1.15.5 = August 2, 792 icThis is converted using a correlation constant of 584,285 days. 9.18.1.15.5 = July 31, GMT.


Mars

The Dresden Codex The Dresden Codex contains three Mars tables and there is a partial Mars almanac in the Madrid codex. Pages 43b to 45b of the Dresden codex are a table of the 780-day synodic cycle of Mars. The retrograde period of its path, when it is brightest and visible for the longest time, is emphasized. The table is dated to the retrograde period of 818 AD. The text refers to an eclipse season (when the moon is near its ascending or descending node) that coincided with the retrograde motion of mars. The upper and lower water tables on pages 69–74 share the same pages in the Dresden Codex but are different from each other. The upper table has 13 groups of 54 days – 702 days. This is the time needed for Mars to return to the same celestial longitude, if the celestial period included a retrograde period. The table was revised for reuse; it has seven base dates from the seventh to the eleventh centuries. The lower water table has 28 groups of 65 days – 1820 days. This table has only one picture – a scene of torrential rain on page 74. This has been erroneously interpreted as a depiction of the end of the world. The purpose of the table is to track several cultural and natural cycles. These are planting and harvesting, drought, rain and hurricane season, the eclipse season and the relationship of the Milky Way to the horizon. The table was periodically revised by giving it five base dates from the fourth to the twelfth centuries. The Dresden Codex pages 8–59 is a planetary table that commensurates the synodic cycles of Mars and Venus. There are four possible base dates, two in the seventh and two in the eighth centuries. The Madrid Codex Page 2a of the Madrid codex is an almanac of the synodic cycle of Mars. This heavily damaged page is probably a fragment of a longer table. The 78-day periods and iconography are similar to the table in the Dresden Codex.


Jupiter and Saturn

Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
and particularly
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
are two of the brightest celestial objects. As the Earth passes superior planets in its orbit closer to the Sun they appear to stop moving in the direction of travel of their orbits and back up for a period before resuming their path through the sky. This is
apparent retrograde motion Apparent retrograde motion is the apparent motion of a planet in a direction opposite to that of other bodies within its system, as observed from a particular vantage point. Direct motion or prograde motion is motion in the same direction as ...
. When they start or end retrograde motion their daily motion is stationary before going in another direction. Inscriptions Lounsbury found that the dates of several inscriptions commemorating dynastic rituals at Palenque by K'inich Kan Bahlam II coincide with the departure of Jupiter from its secondary stationary point. He also showed that close conjunctions of Jupiter, Saturn and/or Mars were probably celebrated, particularly the "2 Cib 14 Mol" event on about July 21, 690 (
Proleptic Gregorian calendar The proleptic Gregorian calendar is produced by extending the Gregorian calendar backward to the dates preceding its official introduction in 1582. In nations that adopted the Gregorian calendar after its official and first introduction, dates occ ...
date) – July 18 astronomical. The Dumbarton Oaks Relief Panel 1 came from El Cayo,
Chiapas Chiapas (; Tzotzil and Tzeltal: ''Chyapas'' ), officially the Free and Sovereign State of Chiapas ( es, Estado Libre y Soberano de Chiapas), is one of the states that make up the 32 federal entities of Mexico. It comprises 124 municipalities ...
– a site 12 kilometers up the
Usumacinta river The Usumacinta River (; named after the howler monkey) is a river in southeastern Mexico and northwestern Guatemala. It is formed by the junction of the Pasión River, which arises in the Sierra de Santa Cruz (in Guatemala) and the Salinas ...
from Piedras Negras. Fox and Juteson (1978) found that two of these dates are separated by 378 days – close to the mean synodic period of Saturn – 378.1 days. Each date also falls a few days before Saturn reached its second stationary point, before ending its retrograde motion. The Brickers identified two additional dates that are part of the same series. Susan Milbrath has extended Lounsbury's work concerning Jupiter to other classic and post-classic sites. Central to her work is her identification of God K (K'awil) as Jupiter. Another component of her work is the tying together of the synodic cycles of Jupiter and Saturn with the katun cycles of the Long Count. She finds a clear link between God K images and dates coinciding with its stationary points in retrograde. She believes that K'awil is the god of the retrograde cycles of Jupiter and Saturn. The Brickers question this interpretation. Maya Codices No clear Jupiter or Saturn almanac can be found in the codices.


Eclipses

The Dresden Codex The
Dresden codex The ''Dresden Codex'' is a Maya book, which was believed to be the oldest surviving book written in the Americas, dating to the 11th or 12th century. However, in September 2018 it was proven that the Maya Codex of Mexico, previously known as t ...
pages 51 and 58 are an eclipse table. The table contains a warning of all solar and most lunar eclipses. It does not specify which ones will be visible in the Maya area. The length of the table is 405 lunations (about 33 years). It was meant to be recycled and has a periodic correction scheme. The starting date is in the eighth century and has corrections allowing it to be used up to the eighteenth century. The table also relates eclipses and lunar phenomena to the cycles of Venus, possibly Mercury and other celestial and seasonal phenomena. An eclipse can occur when the Moon's orbit crosses the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
. This happens twice a year and is referred to as the ascending or descending node. An eclipse can occur during a period 18 days before or after an ascending or descending node. This is an
Eclipse season An eclipse season is the period, roughly every six months, when eclipses occur. Eclipse seasons are the result of the axial parallelism of the Moon's tilted orbital plane ( tilted five degrees to the Earth's orbital plane), just as Earth's we ...
. Three entry dates in the Dresden Codex eclipse table give the eclipse season for November – December 755. The Madrid Codex Pages 10a – 13a of the Madrid Codex are an eclipse almanac similar to the one in the Dresden Codex. The table is concerned with rain, drought, the agricultural cycle and how these correspond with eclipses. These eclipses probably correspond to the eclipses in the Dresden Codex (the eighth or ninth century). The Paris Codex The Katun Pages (pages 2–11) in the Paris Codex are concerned with the rituals to be performed at Katun completions. They also contain references to historical astronomical events during the fifth to the eighth centuries. These include eclipses, references to Venus and the relationship of Venus to named constellations. Inscriptions Lord Kan II of
Caracol Caracol is a large ancient Maya archaeological site, located in what is now the Cayo District, of Belize. It is situated approximately south of Xunantunich, and the town of San Ignacio, and from the Macal River. It rests on the Vaca Plateau ...
had altar 21 installed in the center of a ball court. It has inscriptions that mark important dates of the accomplishments of his ancestor Lord Water and himself. Lord Kan II used the dates of important astronomical phenomena for these. For example: 9.5.19.1.2 9 Ik 5 Uo – April 14, 553, total lunar eclipse – Accession of Lord Water, grandfather of Kan II
9.6.8.4.2 7 Ik 0 Zip – April 27, 562, annular solar eclipse 8 days ago and penumbral lunar eclipse in 7 days – Star war to
Tikal Tikal () (''Tik’al'' in modern Mayan orthography) is the ruin of an ancient city, which was likely to have been called Yax Mutal, found in a rainforest in Guatemala. It is one of the largest archeological sites and urban centers of the pre- ...

9.7.19.10.0 1 Ahau 3 Pop – March 13, 593, partial solar eclipse five days ago – Ball game


The stars

The Maya identified 13 constellations along the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
. These are the content of an almanac in the ''Paris Codex''. Each of these was associated with an animal. These animal representations are pictured in two almanacs in the ''Madrid Codex'' where they are related to other astronomical phenomena – eclipses and Venus – and Haab rituals.Bricker and Bricker 2011 p. 691 Paris Codex Pages 21–24 of the Paris Codex are a zodiacal almanac. It is made up of five rows of 364 days each. Each row is divided into 13 subdivisions of 28 days each. Its iconography consists of animals, including a scorpion suspended from a skyband and eclipse glyphs. It dates from the eighth century. Madrid Codex The longest almanac in the Madrid codex (pages 65–72,73b) is a compendium of information about agriculture, ceremonies, rituals and other matters. Astronomical information includes references to eclipses, the synodic cycles of Venus and zodiacal constellations. The almanac dates to the middle of the fifteenth century.


The Milky Way

The
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
appears as a hazy band of faint stars. It is the disc of our own galaxy, viewed edge-on from within it. It appears as a 10°-wide band of diffuse light passing all the way around the sky. It crosses the ecliptic at a high angle. Its most prominent feature is a large dust cloud that forms a dark rift in its southern and western part. There is no almanac in the codices that refers specifically to the Milky Way but there are references to it in almanacs concerned with other phenomena.


Precession of the equinoxes

The
equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
es move westward along the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
relative to the
fixed star In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
s, opposite to the yearly motion of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
along the ecliptic, returning to the same position approximately every 26,000 years. The "Serpent Numbers" in the
Dresden codex The ''Dresden Codex'' is a Maya book, which was believed to be the oldest surviving book written in the Americas, dating to the 11th or 12th century. However, in September 2018 it was proven that the Maya Codex of Mexico, previously known as t ...
pp. 61–69 is a table of dates written in the coils of undulating serpents. Beyer was the first to notice that the Serpent Series is based on an unusually long distance number of 1.18.1.8.0.16 (5,482,096 days – more than 30,000 years). Grofe believes that this interval is quite close to a whole multiple of the
sidereal year A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to t ...
, returning the sun to precisely the same position against the background of stars. He proposes that this is an observation of the
precession of the equinoxes In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In partic ...
and that the serpent series shows how the Maya calculated this by observing the sidereal position of total lunar eclipses at fixed points within the tropical year. Bricker and Bricker think that he based this on misinterpretation of the epigraphy and give their reasons in ''Astronomy in the Maya Codices''.Bricker and Bricker 2011 pp. 405–6


Notes


References


Bibliography

* * * * * * * * * * * * * * * * * * * * * * * * {{refend
Astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
Ancient astronomy