Matrix decoder
   HOME

TheInfoList



OR:

Matrix decoding is an audio technology where a small number of discrete
audio channel An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of roug ...
s (e.g., 2) are decoded into a larger number of channels on play back (e.g., 5). The channels are generally, but not always, arranged for transmission or recording by an encoder, and decoded for playback by a decoder. The function is to allow multichannel audio, such as
quadraphonic sound Quadraphonic (or quadrophonic and sometimes quadrasonic) sound – equivalent to what is now called 4.0 surround sound – uses four audio channels in which speakers are positioned at the four corners of a listening space. The system allows for t ...
or
surround sound Surround sound is a technique for enriching the fidelity and depth of sound reproduction by using multiple audio channels from speakers that surround the listener (surround channels). Its first application was in movie theaters. Prior to s ...
to be encoded in a stereo signal, and thus played back as stereo on stereo equipment, and as surround on surround equipment – this is "compatible" multichannel audio.


Process

Matrix encoding does ''not'' allow one to encode several channels in ''fewer'' channels without losing information: one cannot fit 5 channels into 2 (or even 3 into 2) without losing information, as this loses
dimensions In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
: the decoded signals are not
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independe ...
. The idea is rather to encode something that will both be an acceptable approximation of the surround sound when decoded, and acceptable (or even superior) stereo.


Notation

The notation for matrix encoding consists of the number of original discrete audio channels separated by a colon from the number of encoded and decoded channels. For example, four channels encoded into two discrete channels and decoded back to four-channels would be notated: 4:2:4 Some methods derive new channels from the existing ones, with no special encoding of the audio source. For example, five discrete channels decoded to six channels would be notated: 5:5:6 Such derived channel "decoders" may take advantage of the Haas effect, as well as audio cues inherent in the source channels. Many matrix encoding methods have been developed:


Hafler circuit (2:2:4)

The earliest and simpler form of decoding is the
Hafler circuit The Hafler circuit is a passive electronics circuit with the aim of getting derived surround sound or ambiophony from regular stereo recordings without using costly electronics. Such circuits are generally known as matrix decoders. The Dynaquad ...
, deriving back channels out of normal stereo recording (2:2:4). It was used for decoding only (encoding sound was not considered).


Decoding matrix


Dynaquad matrix (2:2:4) / (4:2:4)

The Dynaquad matrix introduced in 1969 was based on the
Hafler circuit The Hafler circuit is a passive electronics circuit with the aim of getting derived surround sound or ambiophony from regular stereo recordings without using costly electronics. Such circuits are generally known as matrix decoders. The Dynaquad ...
, but also used for a specific encoding of 4 sound channels in some albums (4:2:4).


Encoding matrix


Decoding matrix


Electro-Voice Stereo-4 matrix (2:2:4) / (4:2:4)

The Stereo-4 matrix was invented by Leonard Feldman and Jon Fixler, introduced in 1970, and sold by
Electro-Voice Electro-Voice (EV) is an American manufacturer of audio equipment, including microphones, amplifiers, and loudspeakers, focused on pro audio applications such as sound reinforcement. As a subdivision of Bosch Communications Systems Inc. since 2 ...
and
Radio Shack RadioShack, formerly RadioShack Corporation, is an American retailer founded in 1921. At its peak in 1999, RadioShack operated over 8,000 worldwide stores named RadioShack or Tandy Electronics in the United States, Mexico, United Kingdom, Austra ...
. This matrix was used to encode 4 sound channels on many record albums (4:2:4).


Encoding matrix


Decoding matrix


SQ matrix, "Stereo Quadraphonic", CBS SQ (4:2:4)

''j = +90^\circ phase-shift, k = -90^\circ phase-shift'' The basic SQ matrix had mono/stereo anomalies as well as encoding/decoding problems, heavily criticized by
Michael Gerzon Michael Anthony Gerzon (4 December 1945 – 6 May 1996) is probably best known for his work on Ambisonics and for his work on digital audio. He also made a large number of recordings, many in the field of free improvisation in which he had a par ...
and others. An attempt to improve the system lead to the use of other encoders or sound capture techniques, yet the decoding matrix remained unchanged.


Position Encoder

An N/2 encoder that encoded every position in a 360° circle - it had 16 inputs and each could be dialed to the exact direction desired, generating an optimized encode.


Forward-Oriented encoder

''j = +90^\circ phase-shift, k = -90^\circ phase-shift'' The Forward-Oriented encoder caused Center Back to be encoded as Center Front and was recommended for live broadcast use for maximum mono compatibility - it also encoded Center Left/Center Right and both diagonal splits in the optimal manner. Could be used to modify existing 2-channel stereo recordings and create 'synthesized SQ' that when played through a Full-Logic or Tate DES SQ decoder, exhibited a 180° or 270° synthesized quad effect. Many stereo FM radio stations broadcasting SQ in the 1970s used their Forward-Oriented SQ encoder for this. For SQ ''decoders'', CBS designed a circuit that produced the 270° enhancement using the 90° phase shifters in the decoder. Sansui's QS Encoders and QS Vario-Matrix Decoders had a similar capability.


Backwards-Oriented encoder

''j = +90^\circ phase-shift, k = -90^\circ phase-shift'' The Backwards-Oriented Encoder was the reverse of the Forward-Oriented Encoder - it allowed sounds to be placed optimally in the back half of the room, but mono-compatibility was sacrificed. When used with standard stereo recordings it created "extra wide" stereo with sounds outside the speakers. Some encoding mixers had channel strips switchable between forward-oriented and backwards-oriented encoding.


London Box

It encoded the Center Back in such a way that it didn't cancel in mono playback, thus its output was usually mixed with that of a Position Encoder or a Forward Oriented encoder. After 1972, the vast majority of SQ Encoded albums were mixed with either the Position Encoder or the Forward-Oriented encoder.


Ghent microphone

In addition, CBS created the SQ Ghent Microphone, which was a spatial microphone system using the
Neumann Neumann is German and Yiddish for "new man", and one of the 20 most common German surnames. People * Von Neumann family, a Jewish Hungarian noble family A–G *Adam Neumann (born 1979), Israeli-born entrepreneur and founder of WeWork * Alfre ...
QM-69 mic. The signals from the QM-69 were differenced, and then phase-matrixed into 2-channel SQ. With the Ghent Microphone, SQ was transformed from a Matrix into a Kernel and an additional signal could be derived to provide N:3:4 performance.


Universal SQ

In 1976, Ben Bauer integrated matrix and discrete systems into USQ, or Universal SQ. It was a hierarchical 4-4-4 discrete matrix that used the SQ matrix as the baseband for discrete
quadraphonic FM FM broadcasting is a method of radio broadcasting using frequency modulation (FM). Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to provide high fidelity sound over broadcast radio. FM broadcasting is capa ...
broadcasts using additional difference signals called "T" and "Q". For a USQ FM broadcast, the additional "T" modulation was placed at 38 kHz in quadrature to the standard stereo difference signal and the "Q" modulation was placed on a carrier at 76 kHz. For standard 2-channel SQ Matrix broadcasts, CBS recommended that an optional pilot-tone be placed at 19 kHz in quadrature to the regular pilot-tone to indicate SQ encoded signals and activate the listeners Logic decoder. CBS argued that the SQ system should be selected as the standard for quadraphonic FM because, in FCC listening tests of the various four channel broadcast proposals, the 4:2:4 SQ system, decoded with a CBS Paramatrix decoder, outperformed 4:3:4 (without logic) as well as all other 4:2:4 (with logic) systems tested, approaching the performance of a discrete master tape within a very slight margin. At the same time, the SQ "fold" to stereo and mono was preferred to the stereo and mono "fold" of 4:4:4, 4:3:4 and all other 4:2:4 encoding systems.


Tate DES decoder

The Directional Enhancement System, also known as the Tate DES, was an advanced decoder that enhanced the directionality of the basic SQ matrix. It first matrixed the four outputs of the SQ decoder to derive additional signals, then compared their envelopes to detect the predominant direction and degree of dominance. A processor section, implemented outside of the Tate IC chips, applied variable attack/decay timing to the control signals and determined the coefficients of the "B" (Blend) matrices needed to enhance the directionality. These were acted upon by true analog multipliers in the Matrix Multiplier IC's, to multiply the incoming matrix by the "B" matrices and produce outputs in which the directionality of all predominant sounds were enhanced. Since the DES could recognize all three directions of the Energy Sphere simultaneously, and enhance the separation, it had a very open and 'discrete' sounding soundfield. In addition, the enhancement was done with sufficient additional complexity that all non-dominant sounds were kept at their proper levels. Dolby used the Tate DES IC's in their theater processors until around 1986, when they developed the Pro Logic system. Unfortunately, delays and problems kept the Tate DES IC's from the market until the late-1970s and only two consumer decoders were ever made that employed them, the Audionics Space & Image Composer and the Fosgate Tate II 101A. The Fosgate used a faster, updated version of the IC, called the Tate II, and additional circuitry that provided for separation enhancement around the full 360 soundfield. Unlike the earlier Full Wave-matching Logic decoders for SQ, that varied the output levels to enhance directionality, the Tate DES cancelled SQ signal crosstalk as a function of the predominant directionality, keeping non-dominant sounds and reverberation in its proper spatial locations at their correct level.


QS matrix, "Regular Matrix", "Quadraphonic Sound" (4:2:4)

''j = +90^\circ phase-shift, k = -90^\circ phase-shift''


Matrix H (4:2:4)

''j = 20° phase-shift'' ''k = 25° phase-shift'' ''l = 55° phase-shift'' ''m = 115° phase-shift''


Ambisonic UHJ kernel (3:2:4 or more)

''j = +90^\circ phase-shift, k = -90^\circ phase-shift''


Dolby Stereo and Dolby Surround (matrix) 4:2:4

Dolby Stereo and
Dolby Surround Dolby Pro Logic is a surround sound processing technology developed by Dolby Laboratories, designed to decode soundtracks encoded with Dolby Surround. Dolby Stereo (also known as ''Dolby MP'' or ''Dolby SVA'') was developed by Dolby in 1976 ...
are also known as Dolby MP, Dolby SVA and
Pro Logic Dolby Pro Logic is a surround sound processing technology developed by Dolby Laboratories, designed to decode soundtracks encoded with Dolby Surround. Dolby Stereo (also known as ''Dolby MP'' or ''Dolby SVA'') was developed by Dolby in 1976 fo ...
. Dolby SVA matrix is the original name of the Dolby Stereo 4:2:4 encoding matrix. The term "Dolby Surround" refers to both the encoding and decoding in the home environment, while in the theater it is known "Dolby Stereo", "Dolby Motion Picture matrix" or "Dolby MP". "Pro Logic" refers to the decoder used, there is no special Pro Logic encoding matrix. The
Ultra Stereo Ultra Stereo is a cinema sound system that was developed in 1984 by chief engineer Jack Cashin. It was a 4/2/4 photographic sound encoding and decoding procedure compatible with (and using the same technical basic structure, with identical sound ...
system, developed by different company, is compatible and uses similar matrixes to Dolby Stereo. The Dolby Stereo Matrix is straightforward: the four original channels: Left (L), Center (C), Right (R), and Surround (S), are combined into two, known as Left-total (LT) and Right-total (RT) by this formula: where ''j = 90° phase-shift'' The center channel information is carried by both LT and RT in phase, and surround channel information by both LT and RT but out of phase. The surround channel is a single limited frequency-range (7 kHz
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
ed) mono rear channel, dynamically compressed and placed with a lower volume than the rest. This allows for better separation of signals. This gives good compatibility with both mono playback, which reproduces L, C and R from the mono speaker with C at a level 3 dB higher than L or R, but surround information cancels out. It also gives good compatibility with two-channel stereo playback where C is reproduced from both left and right speakers to form a phantom center and surround is reproduced from both speakers but in a diffuse manner. A simple 4-channel decoder could simply send the sum signal (L+R) to the center speaker, and the difference signal (L-R) to the surrounds. But such a decoder would provide poor separation between adjacent speaker channels, thus anything intended for the center speaker would also reproduce from left and right speakers only 3 dB below the level in the center speaker. Similarly anything intended for the left speaker would be reproduced from both the center and surround speakers, again only 3 dB below the level in the left speaker. There is, however, complete separation between left and right, and between center and surround channels. To overcome this problem the cinema decoder uses so-called "logic" circuitry to improve the separation. The logic circuitry decides which speaker channel has the highest signal level and gives it priority, attenuating the signals fed to the adjacent channels. Because there already is complete separation between opposite channels there is no need to attenuate those, in effect the decoder switches between L and R priority and C and S priority. This places some limitations on mixing for Dolby Stereo and to ensure that sound mixers mixed soundtracks appropriately they would monitor the sound mix via a Dolby Stereo encoder and decoder in tandem. In addition to the logic circuitry the surround channel is also fed via a delay, adjustable up to 100 ms to suit auditoria of differing sizes, to ensure that any leakage of program material intended for left or right speakers into the surround channel is always heard first from the intended speaker. This exploits the " Precedence effect" to localize the sound to the intended direction.


Dolby Pro Logic II matrix (5:2:5)

''j = +90^\circ phase-shift, k = -90^\circ phase-shift'' The Pro Logic II matrix provides for stereo full frequency back channels. Normally a sub-woofer channel is driven by simply filtering and redirecting the existing bass frequencies of the original stereo track.


See also

* Ambisonic UHJ format *
Dolby Digital Dolby Digital, originally synonymous with Dolby AC-3, is the name for what has now become a family of audio compression technologies developed by Dolby Laboratories. Formerly named Dolby Stereo Digital until 1995, the audio compression is loss ...
*
Dolby Pro Logic Dolby Pro Logic is a surround sound processing technology developed by Dolby Laboratories, designed to decode soundtracks encoded with Dolby Surround. Dolby Stereo (also known as ''Dolby MP'' or ''Dolby SVA'') was developed by Dolby in 1976 ...
* Haas effect *
Quadraphonic sound Quadraphonic (or quadrophonic and sometimes quadrasonic) sound – equivalent to what is now called 4.0 surround sound – uses four audio channels in which speakers are positioned at the four corners of a listening space. The system allows for t ...
*
Surround sound Surround sound is a technique for enriching the fidelity and depth of sound reproduction by using multiple audio channels from speakers that surround the listener (surround channels). Its first application was in movie theaters. Prior to s ...


References

{{Quadraphonic sound Sound Surround sound Quadraphonic sound