Mathematical biology
   HOME

TheInfoList



OR:

Mathematical and theoretical biology, or biomathematics, is a branch of
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
which employs theoretical analysis, mathematical models and abstractions of the
living organisms In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fun ...
to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged. Mathematical biology aims at the mathematical representation and modeling of biological processes, using techniques and tools of
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemati ...
. It can be useful in both theoretical and
practical Pragmatism is a philosophical tradition that considers words and thought as tools and instruments for prediction, problem solving, and action (philosophy), action, and rejects the idea that the function of thought is to describe, represent, ...
research. Describing systems in a quantitative manner means their behavior can be better simulated, and hence properties can be predicted that might not be evident to the experimenter. This requires precise
mathematical model A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
s. Because of the complexity of the
living systems Living systems are open self-organizing life forms that interact with their environment. These systems are maintained by flows of information, energy and matter. In the last few decades, some scientists have proposed that a general living sys ...
, theoretical biology employs several fields of mathematics, and has contributed to the development of new techniques.


History


Early history

Mathematics has been used in biology as early as the 13th century, when Fibonacci used the famous Fibonacci series to describe a growing population of rabbits. In the 18th century Daniel Bernoulli applied mathematics to describe the effect of smallpox on the human population. Thomas Malthus' 1789 essay on the growth of the human population was based on the concept of exponential growth. Pierre François Verhulst formulated the logistic growth model in 1836. Fritz Müller described the evolutionary benefits of what is now called Müllerian mimicry in 1879, in an account notable for being the first use of a mathematical argument in evolutionary ecology to show how powerful the effect of natural selection would be, unless one includes Malthus's discussion of the effects of
population growth Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. The global population has grown from 1 billion in 1800 to ...
that influenced
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended ...
: Malthus argued that growth would be exponential (he uses the word "geometric") while resources (the environment's carrying capacity) could only grow arithmetically. The term "theoretical biology" was first used as a monograph title by Johannes Reinke in 1901, and soon after by Jakob von Uexküll in 1920. One founding text is considered to be On Growth and Form (1917) by D'Arcy Thompson, and other early pioneers include Ronald Fisher, Hans Leo Przibram, Vito Volterra, Nicolas Rashevsky and Conrad Hal Waddington.


Recent growth

Interest in the field has grown rapidly from the 1960s onwards. Some reasons for this include: * The rapid growth of data-rich information sets, due to the genomics revolution, which are difficult to understand without the use of analytical tools * Recent development of mathematical tools such as chaos theory to help understand complex, non-linear mechanisms in biology * An increase in
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
power, which facilitates calculations and
simulation A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of Conceptual model, models; the model represents the key characteristics or behaviors of the selected system or proc ...
s not previously possible * An increasing interest in
in silico In biology and other experimental sciences, an ''in silico'' experiment is one performed on computer or via computer simulation. The phrase is pseudo-Latin for 'in silicon' (correct la, in silicio), referring to silicon in computer chips. It ...
experimentation due to ethical considerations, risk, unreliability and other complications involved in human and animal research


Areas of research

Several areas of specialized research in mathematical and theoretical biology as well as external links to related projects in various universities are concisely presented in the following subsections, including also a large number of appropriate validating references from a list of several thousands of published authors contributing to this field. Many of the included examples are characterised by highly complex, nonlinear, and supercomplex mechanisms, as it is being increasingly recognised that the result of such interactions may only be understood through a combination of mathematical, logical, physical/chemical, molecular and computational models.


Abstract relational biology

Abstract relational biology (ARB) is concerned with the study of general, relational models of complex biological systems, usually abstracting out specific morphological, or anatomical, structures. Some of the simplest models in ARB are the Metabolic-Replication, or (M,R)--systems introduced by Robert Rosen in 1957-1958 as abstract, relational models of cellular and organismal organization. Other approaches include the notion of autopoiesis developed by Maturana and Varela, Kauffman's Work-Constraints cycles, and more recently the notion of closure of constraints.


Algebraic biology

Algebraic biology (also known as symbolic systems biology) applies the algebraic methods of
symbolic computation In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions ...
to the study of biological problems, especially in genomics, proteomics, analysis of molecular structures and study of
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s.


Complex systems biology

An elaboration of systems biology to understand the more complex life processes was developed since 1970 in connection with molecular set theory, relational biology and algebraic biology.


Computer models and automata theory

A monograph on this topic summarizes an extensive amount of published research in this area up to 1986, including subsections in the following areas:
computer modeling Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be dete ...
in biology and medicine, arterial system models,
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
models, biochemical and
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendul ...
network Network, networking and networked may refer to: Science and technology * Network theory, the study of graphs as a representation of relations between discrete objects * Network science, an academic field that studies complex networks Mathematic ...
s, quantum automata, quantum computers in
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
and
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar work ...
, cancer modelling, neural nets, genetic networks, abstract categories in relational biology, metabolic-replication systems,
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
applications in biology and medicine, automata theory, cellular automata,
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
models and complete self-reproduction, chaotic systems in
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
s, relational biology and organismic theories. Modeling cell and molecular biology This area has received a boost due to the growing importance of
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
. *Mechanics of biological tissues *Theoretical enzymology and enzyme kinetics *
Cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
modelling and simulation *Modelling the movement of interacting cell populations *Mathematical modelling of scar tissue formation *Mathematical modelling of intracellular dynamics *Mathematical modelling of the cell cycle *Mathematical modelling of apoptosis Modelling physiological systems *Modelling of arterial disease *Multi-scale modelling of the
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
*Modelling electrical properties of muscle interactions, as in
bidomain The bidomain model is a mathematical model to define the electrical activity of the heart. It consists in a continuum (volume-average) approach in which the cardiac mictrostructure is defined in terms of muscle fibers grouped in sheets, creating a c ...
and monodomain models


Computational neuroscience

Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is the theoretical study of the nervous system.


Evolutionary biology

Ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
and
evolutionary biology Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. It is also defined as the study of the history of life ...
have traditionally been the dominant fields of mathematical biology. Evolutionary biology has been the subject of extensive mathematical theorizing. The traditional approach in this area, which includes complications from genetics, is
population genetics Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and po ...
. Most population geneticists consider the appearance of new
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
s by
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
, the appearance of new genotypes by recombination, and changes in the frequencies of existing alleles and genotypes at a small number of
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
loci. When infinitesimal effects at a large number of gene loci are considered, together with the assumption of linkage equilibrium or quasi-linkage equilibrium, one derives quantitative genetics. Ronald Fisher made fundamental advances in statistics, such as
analysis of variance Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statistician ...
, via his work on quantitative genetics. Another important branch of population genetics that led to the extensive development of
coalescent theory Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, ...
is
phylogenetics In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups ...
. Phylogenetics is an area that deals with the reconstruction and analysis of phylogenetic (evolutionary) trees and networks based on inherited characteristics Traditional population genetic models deal with alleles and genotypes, and are frequently
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
. Many population genetics models assume that population sizes are constant. Variable population sizes, often in the absence of genetic variation, are treated by the field of population dynamics. Work in this area dates back to the 19th century, and even as far as 1798 when Thomas Malthus formulated the first principle of population dynamics, which later became known as the Malthusian growth model. The Lotka–Volterra predator-prey equations are another famous example. Population dynamics overlap with another active area of research in mathematical biology:
mathematical epidemiology Mathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics ...
, the study of infectious disease affecting populations. Various models of the spread of
infections An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable di ...
have been proposed and analyzed, and provide important results that may be applied to health policy decisions. In evolutionary game theory, developed first by John Maynard Smith and
George R. Price George Robert Price (October 6, 1922 – January 6, 1975) was an American population geneticist. Price is often noted for his formulation of the Price equation in 1967. Originally a physical chemist and later a science journalist, he moved ...
, selection acts directly on inherited phenotypes, without genetic complications. This approach has been mathematically refined to produce the field of
adaptive dynamics Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of traits in asexually reproducing populations. It rests on the fo ...
.


Mathematical biophysics

The earlier stages of mathematical biology were dominated by mathematical biophysics, described as the application of mathematics in biophysics, often involving specific physical/mathematical models of biosystems and their components or compartments. The following is a list of mathematical descriptions and their assumptions.


Deterministic processes (dynamical systems)

A fixed mapping between an initial state and a final state. Starting from an initial condition and moving forward in time, a deterministic process always generates the same trajectory, and no two trajectories cross in state space. * Difference equations/Maps – discrete time, continuous state space. * Ordinary differential equations – continuous time, continuous state space, no spatial derivatives. ''See also:'' Numerical ordinary differential equations. *
Partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
 – continuous time, continuous state space, spatial derivatives. ''See also:'' Numerical partial differential equations. * Logical deterministic cellular automata – discrete time, discrete state space. ''See also:'' Cellular automaton.


Stochastic processes (random dynamical systems)

A random mapping between an initial state and a final state, making the state of the system a random variable with a corresponding
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
. * Non-Markovian processes – generalized master equation – continuous time with memory of past events, discrete state space, waiting times of events (or transitions between states) discretely occur. * Jump
Markov process A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
 – master equation – continuous time with no memory of past events, discrete state space, waiting times between events discretely occur and are exponentially distributed. ''See also:''
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deter ...
for numerical simulation methods, specifically dynamic Monte Carlo method and Gillespie algorithm. * Continuous
Markov process A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
 – stochastic differential equations or a
Fokker–Planck equation In statistical mechanics, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, ...
 – continuous time, continuous state space, events occur continuously according to a random
Wiener process In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is ...
.


Spatial modelling

One classic work in this area is
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical ...
's paper on morphogenesis entitled ''
The Chemical Basis of Morphogenesis "The Chemical Basis of Morphogenesis" is an article that the English mathematician Alan Turing wrote in 1952. It describes how patterns in nature, such as stripes and spirals, can arise naturally from a homogeneous, uniform state. The theory, w ...
'', published in 1952 in the Philosophical Transactions of the Royal Society. *Travelling waves in a wound-healing assay *
Swarming behaviour Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving ''en masse'' or migrating in some direction. ...
*A mechanochemical theory of morphogenesis * Biological pattern formation *Spatial distribution modeling using plot samples *
Turing pattern The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomousl ...
s


Mathematical methods

A model of a biological system is converted into a system of equations, although the word 'model' is often used synonymously with the system of corresponding equations. The solution of the equations, by either analytical or numerical means, describes how the biological system behaves either over time or at equilibrium. There are many different types of equations and the type of behavior that can occur is dependent on both the model and the equations used. The model often makes assumptions about the system. The equations may also make assumptions about the nature of what may occur.


Molecular set theory

Molecular set theory (MST) is a mathematical formulation of the wide-sense
chemical kinetics Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with chemical thermodynamics, which deals with the direction in ...
of biomolecular reactions in terms of sets of molecules and their chemical transformations represented by set-theoretical mappings between molecular sets. It was introduced by Anthony Bartholomay, and its applications were developed in mathematical biology and especially in mathematical medicine. In a more general sense, MST is the theory of molecular categories defined as categories of molecular sets and their chemical transformations represented as set-theoretical mappings of molecular sets. The theory has also contributed to biostatistics and the formulation of clinical biochemistry problems in mathematical formulations of pathological, biochemical changes of interest to Physiology, Clinical Biochemistry and Medicine.


Organizational biology

Theoretical approaches to biological organization aim to understand the interdependence between the parts of organisms. They emphasize the circularities that these interdependences lead to. Theoretical biologists developed several concepts to formalize this idea. For example, abstract relational biology (ARB) is concerned with the study of general, relational models of complex biological systems, usually abstracting out specific morphological, or anatomical, structures. Some of the simplest models in ARB are the Metabolic-Replication, or (M,R)--systems introduced by Robert Rosen in 1957-1958 as abstract, relational models of cellular and organismal organization.


Model example: the cell cycle

The eukaryotic
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
is very complex and is one of the most studied topics, since its misregulation leads to
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
s. It is possibly a good example of a mathematical model as it deals with simple calculus but gives valid results. Two research groups have produced several models of the cell cycle simulating several organisms. They have recently produced a generic eukaryotic cell cycle model that can represent a particular eukaryote depending on the values of the parameters, demonstrating that the idiosyncrasies of the individual cell cycles are due to different protein concentrations and affinities, while the underlying mechanisms are conserved (Csikasz-Nagy et al., 2006). By means of a system of
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
s these models show the change in time (
dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water i ...
) of the protein inside a single typical cell; this type of model is called a deterministic process (whereas a model describing a statistical distribution of protein concentrations in a population of cells is called a
stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that ap ...
). To obtain these equations an iterative series of steps must be done: first the several models and observations are combined to form a consensus diagram and the appropriate kinetic laws are chosen to write the differential equations, such as rate kinetics for stoichiometric reactions, Michaelis-Menten kinetics for enzyme substrate reactions and
Goldbeter–Koshland kinetics The Goldbeter–Koshland kinetics Zoltan Szallasi, Jörg Stelling, Vipul Periwal: ''System Modeling in Cellular Biology''. The MIT Press. p 108. describe a steady-state solution for a 2-state biological system. In this system, the interconversi ...
for ultrasensitive transcription factors, afterwards the parameters of the equations (rate constants, enzyme efficiency coefficients and Michaelis constants) must be fitted to match observations; when they cannot be fitted the kinetic equation is revised and when that is not possible the wiring diagram is modified. The parameters are fitted and validated using observations of both wild type and mutants, such as protein half-life and cell size. To fit the parameters, the differential equations must be studied. This can be done either by simulation or by analysis. In a simulation, given a starting vector (list of the values of the variables), the progression of the system is calculated by solving the equations at each time-frame in small increments. In analysis, the properties of the equations are used to investigate the behavior of the system depending on the values of the parameters and variables. A system of differential equations can be represented as a vector field, where each vector described the change (in concentration of two or more protein) determining where and how fast the trajectory (simulation) is heading. Vector fields can have several special points: a
stable point In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in class ...
, called a sink, that attracts in all directions (forcing the concentrations to be at a certain value), an unstable point, either a source or a saddle point, which repels (forcing the concentrations to change away from a certain value), and a limit cycle, a closed trajectory towards which several trajectories spiral towards (making the concentrations oscillate). A better representation, which handles the large number of variables and parameters, is a bifurcation diagram using bifurcation theory. The presence of these special steady-state points at certain values of a parameter (e.g. mass) is represented by a point and once the parameter passes a certain value, a qualitative change occurs, called a bifurcation, in which the nature of the space changes, with profound consequences for the protein concentrations: the cell cycle has phases (partially corresponding to G1 and G2) in which mass, via a stable point, controls cyclin levels, and phases (S and M phases) in which the concentrations change independently, but once the phase has changed at a bifurcation event ( Cell cycle checkpoint), the system cannot go back to the previous levels since at the current mass the vector field is profoundly different and the mass cannot be reversed back through the bifurcation event, making a checkpoint irreversible. In particular the S and M checkpoints are regulated by means of special bifurcations called a Hopf bifurcation and an infinite period bifurcation.


Societies and institutes

* National Institute for Mathematical and Biological Synthesis *
Society for Mathematical Biology The Society for Mathematical Biology (SMB) is an international association co-founded in 1972 in the United States by George Karreman, Herbert Daniel Landahl and (initially chaired) by Anthony Bartholomay for the furtherance of joint scientific a ...

ESMTB: European Society for Mathematical and Theoretical Biology

The Israeli Society for Theoretical and Mathematical Biology

Société Francophone de Biologie Théorique

International Society for Biosemiotic Studies

School of Computational and Integrative Sciences
Jawaharlal Nehru University Jawaharlal Nehru University (JNU) is a public major research university located in New Delhi, India. It was established in 1969 and named after Jawaharlal Nehru, India's first Prime Minister. The university is known for leading faculties an ...


See also

* Biological applications of bifurcation theory * Biophysics *
Biostatistics Biostatistics (also known as biometry) are the development and application of statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experimen ...
* Entropy and life * Ewens's sampling formula * Journal of Theoretical Biology *
Logistic function A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with equation f(x) = \frac, where For values of x in the domain of real numbers from -\infty to +\infty, the S-curve shown on the right is obtained, with the ...
* Mathematical modelling of infectious disease * Metabolic network modelling * Molecular modelling * Morphometrics *
Population genetics Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and po ...
*
Spring school on theoretical biology Estonian Naturalists' Society ( et, Eesti Looduseuurijate Selts, ELUS) is the oldest Estonia-based society of naturalists. It was founded in 1853, and since establishing has been the major scientific organisation focusing on natural history of Es ...
* Statistical genetics * Theoretical ecology *
Turing pattern The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomousl ...


Notes


References

* * * * * Biologist Salary , PayScale "Biologist Salary , Payscale". Payscale.Com, 2021, https://www.payscale.com/research/US/Job=Biologist/Salary. Accessed 3 May 2021. ;Theoretical biology * *


Further reading

* * * * *


External links


The Society for Mathematical BiologyThe Collection of Biostatistics Research Archive
{{DEFAULTSORT:Mathematical And Theoretical Biology