Mass
   HOME

TheInfoList



OR:

Mass is an
intrinsic property In science and engineering, an intrinsic property is a property of a specified subject that exists itself or within the subject. An extrinsic property is not essential or inherent to the subject that is being characterized. For example, mass ...
of a body. It was traditionally believed to be related to the
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a unit ...
of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
in a
physical body In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space. The boundary must be defined and identified by t ...
, until the discovery of the
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
and
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. It was found that different atoms and different
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, anti ...
, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple
definitions A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definiti ...
which are conceptually distinct, but physically
equivalent Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry * Equivalence class (music) *'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *''Equiva ...
. Mass can be experimentally defined as a
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
of the body's
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
, meaning the resistance to
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
(change of
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
) when a
net force Net Force may refer to: * Net force, the overall force acting on an object * ''NetForce'' (film), a 1999 American television film * Tom Clancy's Net Force, a novel series * Tom Clancy's Net Force Explorers, a young adult novel series {{disam ...
is applied. The object's mass also determines the
strength Strength may refer to: Physical strength *Physical strength, as in people or animals * Hysterical strength, extreme strength occurring when people are in life-and-death situations *Superhuman strength, great physical strength far above human c ...
of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, mass is not the same as
weight In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar qua ...
, even though mass is often determined by measuring the object's weight using a spring scale, rather than
balance scale A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances. The traditional scale consists of two plates or bowls suspended at equal distances from a ...
comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass. This is because weight is a force, while mass is the property that (along with gravity) determines the strength of this force.


Phenomena

There are several distinct phenomena that can be used to measure mass. Although some theorists have speculated that some of these phenomena could be independent of each other, current experiments have found no difference in results regardless of how it is measured: * ''Inertial mass'' measures an object's resistance to being accelerated by a force (represented by the relationship ). * ''Active gravitational mass'' determines the strength of the gravitational field generated by an object. * ''Passive gravitational mass'' measures the gravitational force exerted on an object in a known gravitational field. The mass of an object determines its acceleration in the presence of an applied force. The inertia and the inertial mass describe this property of physical bodies at the qualitative and quantitative level respectively. According to Newton's second law of motion, if a body of fixed mass ''m'' is subjected to a single force ''F'', its acceleration ''a'' is given by ''F''/''m''. A body's mass also determines the degree to which it generates and is affected by a gravitational field. If a first body of mass ''m''A is placed at a distance ''r'' (center of mass to center of mass) from a second body of mass ''m''B, each body is subject to an attractive force , where is the "universal gravitational constant". This is sometimes referred to as gravitational mass.When a distinction is necessary, the active and passive gravitational masses may be distinguished. Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are identical; since 1915, this observation has been incorporated ''
a priori ("from the earlier") and ("from the later") are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on empirical evidence or experience. knowledge is independent from current ...
'' in the equivalence principle of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
.


Units of mass

The International System of Units (SI) unit of mass is the kilogram (kg). The kilogram is 1000 grams (g), and was first defined in 1795 as the mass of one cubic decimetre of water at the
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
of ice. However, because precise measurement of a cubic decimetre of water at the specified temperature and pressure was difficult, in 1889 the kilogram was redefined as the mass of a metal object, and thus became independent of the metre and the properties of water, this being a copper prototype of the
grave A grave is a location where a dead body (typically that of a human, although sometimes that of an animal) is buried or interred after a funeral. Graves are usually located in special areas set aside for the purpose of burial, such as grav ...
in 1793, the platinum
Kilogramme des Archives The grave, abbreviated ''gv'', is the unit of mass used in the first metric system which was implemented in France in 1793. In 1795, the grave was renamed as the kilogram. Origin The modern kilogram has its origins in the Age of Enlightenment an ...
in 1799, and the platinum-iridium International Prototype of the Kilogram (IPK) in 1889. However, the mass of the IPK and its national copies have been found to drift over time. The re-definition of the kilogram and several other units came into effect on 20 May 2019, following a final vote by the CGPM in November 2018. The new definition uses only invariant quantities of nature: the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, the caesium hyperfine frequency, the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and the elementary charge. Non-SI units accepted for use with SI units include: * the
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
(t) (or "metric ton"), equal to 1000 kg * the
electronvolt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum ...
(eV), a unit of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
, used to express mass in units of eV/''c''2 through
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physici ...
* the
dalton Dalton may refer to: Science * Dalton (crater), a lunar crater * Dalton (program), chemistry software * Dalton (unit) (Da), the atomic mass unit * John Dalton, chemist, physicist and meteorologist Entertainment * Dalton (Buffyverse), minor ch ...
(Da), equal to 1/12 of the mass of a free carbon-12 atom, approximately .The dalton is convenient for expressing the masses of atoms and molecules. Outside the SI system, other units of mass include: * the slug (sl), an
Imperial unit The imperial system of units, imperial system or imperial units (also known as British Imperial or Exchequer Standards of 1826) is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed thr ...
of mass (about 14.6 kg) * the pound (lb), a unit of mass (about 0.45 kg), which is used alongside the similarly named
pound (force) The pound of force or pound-force (symbol: lbf, sometimes lbf,) is a unit of force used in some systems of measurement, including English Engineering units and the foot–pound–second system. Pound-force should not be confused with pound-m ...
(about 4.5 N), a unit of forceThese are used mainly in the United States except in scientific contexts where SI units are usually used instead. * the Planck mass (about ), a quantity derived from fundamental constants * the solar mass (), defined as the mass of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, primarily used in astronomy to compare large masses such as stars or galaxies (≈ ) * the mass of a particle, as identified with its inverse
Compton wavelength The Compton wavelength is a quantum mechanical property of a particle. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was ...
() * the mass of a star or black hole, as identified with its
Schwarzschild radius The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteris ...
().


Definitions

In
physical science Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together called the "physical sciences". Definition Phy ...
, one may distinguish conceptually between at least seven different aspects of ''mass'', or seven physical notions that involve the concept of ''mass''. Every experiment to date has shown these seven values to be proportional, and in some cases equal, and this proportionality gives rise to the abstract concept of mass. There are a number of ways mass can be measured or operationally defined: * Inertial mass is a measure of an object's resistance to acceleration when a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
is applied. It is determined by applying a force to an object and measuring the acceleration that results from that force. An object with small inertial mass will accelerate more than an object with large inertial mass when acted upon by the same force. One says the body of greater mass has greater
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
. * Active gravitational massThe distinction between "active" and "passive" gravitational mass does not exist in the Newtonian view of gravity as found in
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, and can safely be ignored for many purposes. In most practical applications, Newtonian gravity is assumed because it is usually sufficiently accurate, and is simpler than General Relativity; for example, NASA uses primarily Newtonian gravity to design space missions, although "accuracies are routinely enhanced by accounting for tiny relativistic effects". The distinction between "active" and "passive" is very abstract, and applies to post-graduate level applications of General Relativity to certain problems in cosmology, and is otherwise not used. There is, nevertheless, an important conceptual distinction in Newtonian physics between "inertial mass" and "gravitational mass", although these quantities are identical; the conceptual distinction between these two fundamental definitions of mass is maintained for teaching purposes because they involve two distinct methods of measurement. It was long considered anomalous that the two distinct measurements of mass (inertial and gravitational) gave an identical result. The property, observed by Galileo, that objects of different mass fall with the same rate of acceleration (ignoring air resistance), shows that inertial and gravitational mass are the same.
is a measure of the strength of an object's gravitational flux (gravitational flux is equal to the surface integral of gravitational field over an enclosing surface). Gravitational field can be measured by allowing a small "test object" to fall freely and measuring its
free-fall In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on i ...
acceleration. For example, an object in free-fall near the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
is subject to a smaller gravitational field, and hence accelerates more slowly, than the same object would if it were in free-fall near the Earth. The gravitational field near the Moon is weaker because the Moon has less active gravitational mass. * Passive gravitational mass is a measure of the strength of an object's interaction with a gravitational field. Passive gravitational mass is determined by dividing an object's weight by its free-fall acceleration. Two objects within the same gravitational field will experience the same acceleration; however, the object with a smaller passive gravitational mass will experience a smaller force (less weight) than the object with a larger passive gravitational mass. * According to relativity, mass is nothing else than the
rest energy The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
of a system of particles, meaning the energy of that system in a
reference frame In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathe ...
where it has zero momentum. Mass can be converted into other forms of energy according to the principle of
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physici ...
. This equivalence is exemplified in a large number of physical processes including
pair production Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifi ...
,
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
and
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
. Pair production and nuclear fusion are processes in which measurable amounts of mass are converted to
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
or vice versa. * Curvature of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
is a relativistic manifestation of the existence of mass. Such curvature is extremely weak and difficult to measure. For this reason, curvature was not discovered until after it was predicted by Einstein's theory of general relativity. Extremely precise
atomic clocks An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
on the surface of the Earth, for example, are found to measure less time (run slower) when compared to similar clocks in space. This difference in elapsed time is a form of curvature called
gravitational time dilation Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer ...
. Other forms of curvature have been measured using the
Gravity Probe B Gravity Probe B (GP-B) was a satellite-based experiment to test two unverified predictions of general relativity: the geodetic effect and frame-dragging. This was to be accomplished by measuring, very precisely, tiny changes in the direction of ...
satellite. * Quantum mass manifests itself as a difference between an object's quantum
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
and its
wave number In the physical sciences, the wavenumber (also wave number or repetency) is the ''spatial frequency'' of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber). It is analogous to temp ...
. The quantum mass of a particle is proportional to the inverse
Compton wavelength The Compton wavelength is a quantum mechanical property of a particle. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was ...
and can be determined through various forms of spectroscopy. In relativistic quantum mechanics, mass is one of the irreducible representation labels of the Poincaré group.


Weight vs. mass

In everyday usage, mass and "
weight In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar qua ...
" are often used interchangeably. For instance, a person's weight may be stated as 75 kg. In a constant gravitational field, the weight of an object is proportional to its mass, and it is unproblematic to use the same unit for both concepts. But because of slight differences in the strength of the Earth's gravitational field at different places, the distinction becomes important for measurements with a precision better than a few percent, and for places far from the surface of the Earth, such as in space or on other planets. Conceptually, "mass" (measured in
kilograms The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
) refers to an intrinsic property of an object, whereas "weight" (measured in newtons) measures an object's resistance to deviating from its current course of
free fall In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on ...
, which can be influenced by the nearby gravitational field. No matter how strong the gravitational field, objects in free fall are weightless, though they still have mass. The force known as "weight" is proportional to mass and
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
in all situations where the mass is accelerated away from free fall. For example, when a body is at rest in a gravitational field (rather than in free fall), it must be accelerated by a force from a scale or the surface of a planetary body such as the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
or the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
. This force keeps the object from going into free fall. Weight is the opposing force in such circumstances and is thus determined by the acceleration of free fall. On the surface of the Earth, for example, an object with a mass of 50 kilograms weighs 491 newtons, which means that 491 newtons is being applied to keep the object from going into free fall. By contrast, on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 newtons, because only 81.5 newtons is required to keep this object from going into a free fall on the moon. Restated in mathematical terms, on the surface of the Earth, the weight ''W'' of an object is related to its mass ''m'' by , where is the acceleration due to Earth's gravitational field, (expressed as the acceleration experienced by a free-falling object). For other situations, such as when objects are subjected to mechanical accelerations from forces other than the resistance of a planetary surface, the weight force is proportional to the mass of an object multiplied by the total acceleration away from free fall, which is called the
proper acceleration In relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at ...
. Through such mechanisms, objects in elevators, vehicles, centrifuges, and the like, may experience weight forces many times those caused by resistance to the effects of gravity on objects, resulting from planetary surfaces. In such cases, the generalized equation for weight ''W'' of an object is related to its mass ''m'' by the equation , where ''a'' is the proper acceleration of the object caused by all influences other than gravity. (Again, if gravity is the only influence, such as occurs when an object falls freely, its weight will be zero).


Inertial vs. gravitational mass

Although inertial mass, passive gravitational mass and active gravitational mass are conceptually distinct, no experiment has ever unambiguously demonstrated any difference between them. In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, Newton's third law implies that active and passive gravitational mass must always be identical (or at least proportional), but the classical theory offers no compelling reason why the gravitational mass has to equal the inertial mass. That it does is merely an empirical fact.
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
developed his
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
starting with the assumption that the inertial and passive gravitational masses are the same. This is known as the equivalence principle. The particular equivalence often referred to as the "Galilean equivalence principle" or the "
weak equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (suc ...
" has the most important consequence for freely falling objects. Suppose an object has inertial and gravitational masses ''m'' and ''M'', respectively. If the only force acting on the object comes from a gravitational field ''g'', the force on the object is: : F = M g. Given this force, the acceleration of the object can be determined by Newton's second law: : F = m a. Putting these together, the gravitational acceleration is given by: : a=\fracg. This says that the ratio of gravitational to inertial mass of any object is equal to some constant ''K''
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
all objects fall at the same rate in a given gravitational field. This phenomenon is referred to as the "universality of free-fall". In addition, the constant ''K'' can be taken as 1 by defining our units appropriately. The first experiments demonstrating the universality of free-fall were—according to scientific 'folklore'—conducted by Galileo obtained by dropping objects from the
Leaning Tower of Pisa The Leaning Tower of Pisa ( it, torre pendente di Pisa), or simply, the Tower of Pisa (''torre di Pisa'' ), is the ''campanile'', or freestanding bell tower, of Pisa Cathedral. It is known for its nearly four-degree lean, the result of an unst ...
. This is most likely apocryphal: he is more likely to have performed his experiments with balls rolling down nearly frictionless
inclined plane An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six clas ...
s to slow the motion and increase the timing accuracy. Increasingly precise experiments have been performed, such as those performed by
Loránd Eötvös Baron Loránd Eötvös de Vásárosnamény (or Loránd Eötvös, , '' hu, vásárosnaményi báró Eötvös Loránd Ágoston''; 27 July 1848 – 8 April 1919), also called Baron Roland von Eötvös in English literature, was a Hungarian physicist ...
, using the
torsion balance A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional ...
pendulum, in 1889. , no deviation from universality, and thus from Galilean equivalence, has ever been found, at least to the precision 10−6. More precise experimental efforts are still being carried out. The universality of free-fall only applies to systems in which gravity is the only acting force. All other forces, especially
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
and
air resistance In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
, must be absent or at least negligible. For example, if a hammer and a feather are dropped from the same height through the air on Earth, the feather will take much longer to reach the ground; the feather is not really in ''free''-fall because the force of air resistance upwards against the feather is comparable to the downward force of gravity. On the other hand, if the experiment is performed in a
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
, in which there is no air resistance, the hammer and the feather should hit the ground at exactly the same time (assuming the acceleration of both objects towards each other, and of the ground towards both objects, for its own part, is negligible). This can easily be done in a high school laboratory by dropping the objects in transparent tubes that have the air removed with a vacuum pump. It is even more dramatic when done in an environment that naturally has a vacuum, as
David Scott David Randolph Scott (born June 6, 1932) is an American retired test pilot and NASA astronaut who was the seventh person to walk on the Moon. Selected as part of the third group of astronauts in 1963, Scott flew to space three times and ...
did on the surface of the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
during
Apollo 15 Apollo 15 (July 26August 7, 1971) was the ninth crewed mission in the United States' Apollo program and the fourth to Moon landing, land on the Moon. It was the first List of Apollo missions#Alphabetical mission types, J mission, with a ...
. A stronger version of the equivalence principle, known as the ''Einstein equivalence principle'' or the ''strong equivalence principle'', lies at the heart of the
general theory of relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
. Einstein's equivalence principle states that within sufficiently small regions of space-time, it is impossible to distinguish between a uniform acceleration and a uniform gravitational field. Thus, the theory postulates that the force acting on a massive object caused by a gravitational field is a result of the object's tendency to move in a straight line (in other words its inertia) and should therefore be a function of its inertial mass and the strength of the gravitational field.


Origin

In
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
, a
mass generation mechanism In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The probl ...
is a theory which attempts to explain the origin of mass from the most fundamental laws of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
. To date, a number of different models have been proposed which advocate different views of the origin of mass. The problem is complicated by the fact that the notion of mass is strongly related to the
gravitational interaction In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
but a theory of the latter has not been yet reconciled with the currently popular model of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, known as the Standard Model.


Pre-Newtonian concepts


Weight as an amount

The concept of
amount Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a unit ...
is very old and predates recorded history. Humans, at some early era, realized that the weight of a collection of similar objects was
directly proportional In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio, which is called the coefficient of proportionality or proportionality constan ...
to the number of objects in the collection: : W_n \propto n, where ''W'' is the weight of the collection of similar objects and ''n'' is the number of objects in the collection. Proportionality, by definition, implies that two values have a constant
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
: : \frac = \frac, or equivalently \frac = \frac. An early use of this relationship is a
balance scale A scale or balance is a device used to measure weight or mass. These are also known as mass scales, weight scales, mass balances, and weight balances. The traditional scale consists of two plates or bowls suspended at equal distances from a ...
, which balances the force of one object's weight against the force of another object's weight. The two sides of a balance scale are close enough that the objects experience similar gravitational fields. Hence, if they have similar masses then their weights will also be similar. This allows the scale, by comparing weights, to also compare masses. Consequently, historical weight standards were often defined in terms of amounts. The Romans, for example, used the
carob The carob ( ; ''Ceratonia siliqua'') is a flowering evergreen tree or shrub in the Caesalpinioideae sub-family of the legume family, Fabaceae. It is widely cultivated for its edible fruit pods, and as an ornamental tree in gardens and lands ...
seed ( carat or
siliqua The siliqua (plural ''siliquae'') is the modern name given (without any ancient evidence to confirm the designation) to small, thin, Roman silver coins produced in the 4th century A.D. and later. When the coins were in circulation, the Latin wo ...
) as a measurement standard. If an object's weight was equivalent t
1728 carob seeds
then the object was said to weigh one Roman pound. If, on the other hand, the object's weight was equivalent to 144 carob seeds then the object was said to weigh one Roman ounce (uncia). The Roman pound and ounce were both defined in terms of different sized collections of the same common mass standard, the carob seed. The ratio of a Roman ounce (144 carob seeds) to a Roman pound (1728 carob seeds) was: : \frac = \frac = \frac = \frac.


Planetary motion

In 1600 AD, Johannes Kepler sought employment with
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
, who had some of the most precise astronomical data available. Using Brahe's precise observations of the planet Mars, Kepler spent the next five years developing his own method for characterizing planetary motion. In 1609, Johannes Kepler published his three laws of planetary motion, explaining how the planets orbit the Sun. In Kepler's final planetary model, he described planetary orbits as following elliptical paths with the Sun at a focal point of the ellipse. Kepler discovered that the
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
of the
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets ...
of each planet is directly proportional to the cube of the semi-major axis of its orbit, or equivalently, that the
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of these two values is constant for all planets in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
.This constant ratio was later shown to be a direct measure of the Sun's active gravitational mass; it has units of distance cubed per time squared, and is known as the standard gravitational parameter: : \mu=4\pi^2\frac\propto\text On 25 August 1609,
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
demonstrated his first telescope to a group of Venetian merchants, and in early January 1610, Galileo observed four dim objects near Jupiter, which he mistook for stars. However, after a few days of observation, Galileo realized that these "stars" were in fact orbiting Jupiter. These four objects (later named the Galilean moons in honor of their discoverer) were the first celestial bodies observed to orbit something other than the Earth or Sun. Galileo continued to observe these moons over the next eighteen months, and by the middle of 1611, he had obtained remarkably accurate estimates for their periods.


Galilean free fall

Sometime prior to 1638, Galileo turned his attention to the phenomenon of objects in free fall, attempting to characterize these motions. Galileo was not the first to investigate Earth's gravitational field, nor was he the first to accurately describe its fundamental characteristics. However, Galileo's reliance on scientific experimentation to establish physical principles would have a profound effect on future generations of scientists. It is unclear if these were just hypothetical experiments used to illustrate a concept, or if they were real experiments performed by Galileo, but the results obtained from these experiments were both realistic and compelling. A biography by Galileo's pupil
Vincenzo Viviani Vincenzo Viviani (April 5, 1622 – September 22, 1703) was an Italian mathematician and scientist. He was a pupil of Torricelli and a disciple of Galileo.balls of the same material, but different masses, from the
Leaning Tower of Pisa The Leaning Tower of Pisa ( it, torre pendente di Pisa), or simply, the Tower of Pisa (''torre di Pisa'' ), is the ''campanile'', or freestanding bell tower, of Pisa Cathedral. It is known for its nearly four-degree lean, the result of an unst ...
to demonstrate that their time of descent was independent of their mass.At the time when Viviani asserts that the experiment took place, Galileo had not yet formulated the final version of his law of free fall. He had, however, formulated an earlier version that predicted that bodies ''of the same material'' falling through the same medium would fall at the same speed. See In support of this conclusion, Galileo had advanced the following theoretical argument: He asked if two bodies of different masses and different rates of fall are tied by a string, does the combined system fall faster because it is now more massive, or does the lighter body in its slower fall hold back the heavier body? The only convincing resolution to this question is that all bodies must fall at the same rate. A later experiment was described in Galileo's ''Two New Sciences'' published in 1638. One of Galileo's fictional characters, Salviati, describes an experiment using a bronze ball and a wooden ramp. The wooden ramp was "12 cubits long, half a cubit wide and three finger-breadths thick" with a straight, smooth, polished
groove Groove or Grooves may refer to: Music * Groove (music) * Groove (drumming) * The Groove (band), an Australian rock/pop band of the 1960s * The Groove (Sirius XM), a US radio station * Groove 101.7FM, a former Perth, Australia, radio station ...
. The groove was lined with "
parchment Parchment is a writing material made from specially prepared untanned skins of animals—primarily sheep, calves, and goats. It has been used as a writing medium for over two millennia. Vellum is a finer quality parchment made from the skins o ...
, also smooth and polished as possible". And into this groove was placed "a hard, smooth and very round bronze ball". The ramp was inclined at various
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
s to slow the acceleration enough so that the elapsed time could be measured. The ball was allowed to roll a known distance down the ramp, and the time taken for the ball to move the known distance was measured. The time was measured using a water clock described as follows: :a large vessel of water placed in an elevated position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which we collected in a small glass during the time of each descent, whether for the whole length of the channel or for a part of its length; the water thus collected was weighed, after each descent, on a very accurate balance; the differences and ratios of these weights gave us the differences and ratios of the times, and this with such accuracy that although the operation was repeated many, many times, there was no appreciable discrepancy in the results. Galileo found that for an object in free fall, the distance that the object has fallen is always proportional to the square of the elapsed time: : \propto Galileo had shown that objects in free fall under the influence of the Earth's gravitational field have a constant acceleration, and Galileo's contemporary, Johannes Kepler, had shown that the planets follow elliptical paths under the influence of the Sun's gravitational mass. However, Galileo's free fall motions and Kepler's planetary motions remained distinct during Galileo's lifetime.


Newtonian mass

Robert Hooke had published his concept of gravitational forces in 1674, stating that all celestial bodies have an attraction or gravitating power towards their own centers, and also attract all the other celestial bodies that are within the sphere of their activity. He further stated that gravitational attraction increases by how much nearer the body wrought upon is to its own center. In correspondence with
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
from 1679 and 1680, Hooke conjectured that gravitational forces might decrease according to the double of the distance between the two bodies. Hooke urged Newton, who was a pioneer in the development of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, to work through the mathematical details of Keplerian orbits to determine if Hooke's hypothesis was correct. Newton's own investigations verified that Hooke was correct, but due to personal differences between the two men, Newton chose not to reveal this to Hooke. Isaac Newton kept quiet about his discoveries until 1684, at which time he told a friend,
Edmond Halley Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720. From an observatory he constructed on Saint Helena in 1676–77, H ...
, that he had solved the problem of gravitational orbits, but had misplaced the solution in his office. After being encouraged by Halley, Newton decided to develop his ideas about gravity and publish all of his findings. In November 1684, Isaac Newton sent a document to Edmund Halley, now lost but presumed to have been titled ''
De motu corporum in gyrum (from Latin: "On the motion of bodies in an orbit"; abbreviated ) is the presumed title of a manuscript by Isaac Newton sent to Edmond Halley in November 1684. The manuscript was prompted by a visit from Halley earlier that year when he had q ...
'' (Latin for "On the motion of bodies in an orbit"). Halley presented Newton's findings to the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
of London, with a promise that a fuller presentation would follow. Newton later recorded his ideas in a three-book set, entitled '' Philosophiæ Naturalis Principia Mathematica'' (Latin: ''Mathematical Principles of Natural Philosophy''). The first was received by the Royal Society on 28 April 1685–86; the second on 2 March 1686–87; and the third on 6 April 1686–87. The Royal Society published Newton's entire collection at their own expense in May 1686–87. Isaac Newton had bridged the gap between Kepler's gravitational mass and Galileo's gravitational acceleration, resulting in the discovery of the following relationship which governed both of these: : \mathbf=-\mu\frac where g is the apparent acceleration of a body as it passes through a region of space where gravitational fields exist, ''μ'' is the gravitational mass ( standard gravitational parameter) of the body causing gravitational fields, and R is the radial coordinate (the distance between the centers of the two bodies). By finding the exact relationship between a body's gravitational mass and its gravitational field, Newton provided a second method for measuring gravitational mass. The mass of the Earth can be determined using Kepler's method (from the orbit of Earth's Moon), or it can be determined by measuring the gravitational acceleration on the Earth's surface, and multiplying that by the square of the Earth's radius. The mass of the Earth is approximately three-millionths of the mass of the Sun. To date, no other accurate method for measuring gravitational mass has been discovered.


Newton's cannonball

Newton's cannonball was a
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anc ...
used to bridge the gap between Galileo's gravitational acceleration and Kepler's elliptical orbits. It appeared in Newton's 1728 book ''A Treatise of the System of the World''. According to Galileo's concept of gravitation, a dropped stone falls with constant acceleration down towards the Earth. However, Newton explains that when a stone is thrown horizontally (meaning sideways or perpendicular to Earth's gravity) it follows a curved path. "For a stone projected is by the pressure of its own weight forced out of the rectilinear path, which by the projection alone it should have pursued, and made to describe a curve line in the air; and through that crooked way is at last brought down to the ground. And the greater the velocity is with which it is projected, the farther it goes before it falls to the Earth." Newton further reasons that if an object were "projected in an horizontal direction from the top of a high mountain" with sufficient velocity, "it would reach at last quite beyond the circumference of the Earth, and return to the mountain from which it was projected."


Universal gravitational mass

In contrast to earlier theories (e.g.
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars ...
) which stated that the heavens were made of entirely different material, Newton's theory of mass was groundbreaking partly because it introduced universal gravitational mass: every object has gravitational mass, and therefore, every object generates a gravitational field. Newton further assumed that the strength of each object's gravitational field would decrease according to the square of the distance to that object. If a large collection of small objects were formed into a giant spherical body such as the Earth or Sun, Newton calculated the collection would create a gravitational field proportional to the total mass of the body, and inversely proportional to the square of the distance to the body's center.These two properties are very useful, as they allow spherical collections of objects to be treated exactly like large individual objects. For example, according to Newton's theory of universal gravitation, each carob seed produces a gravitational field. Therefore, if one were to gather an immense number of carob seeds and form them into an enormous sphere, then the gravitational field of the sphere would be proportional to the number of carob seeds in the sphere. Hence, it should be theoretically possible to determine the exact number of carob seeds that would be required to produce a gravitational field similar to that of the Earth or Sun. In fact, by
unit conversion Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors which change the measured quantity value without changing its effects. Overview The process ...
it is a simple matter of abstraction to realize that any traditional mass unit can theoretically be used to measure gravitational mass. Measuring gravitational mass in terms of traditional mass units is simple in principle, but extremely difficult in practice. According to Newton's theory, all objects produce gravitational fields and it is theoretically possible to collect an immense number of small objects and form them into an enormous gravitating sphere. However, from a practical standpoint, the gravitational fields of small objects are extremely weak and difficult to measure. Newton's books on universal gravitation were published in the 1680s, but the first successful measurement of the Earth's mass in terms of traditional mass units, the
Cavendish experiment The Cavendish experiment, performed in 1797–1798 by English scientist Henry Cavendish, was the first experiment to measure the force of gravity between masses in the laboratory and the first to yield accurate values for the gravitational con ...
, did not occur until 1797, over a hundred years later.
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
found that the Earth's density was 5.448 ± 0.033 times that of water. As of 2009, the Earth's mass in kilograms is only known to around five digits of accuracy, whereas its gravitational mass is known to over nine significant figures. Given two objects A and B, of masses ''M''A and ''M''B, separated by a
displacement Displacement may refer to: Physical sciences Mathematics and Physics * Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
RAB, Newton's law of gravitation states that each object exerts a gravitational force on the other, of magnitude : \mathbf_=-GM_M_\frac\ , where ''G'' is the universal gravitational constant. The above statement may be reformulated in the following way: if ''g'' is the magnitude at a given location in a gravitational field, then the gravitational force on an object with gravitational mass ''M'' is : F=Mg. This is the basis by which masses are determined by
weighing In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quan ...
. In simple
spring scales A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's Law, which states th ...
, for example, the force ''F'' is proportional to the displacement of the
spring Spring(s) may refer to: Common uses * Spring (season) Spring, also known as springtime, is one of the four temperate seasons, succeeding winter and preceding summer. There are various technical definitions of spring, but local usage of ...
beneath the weighing pan, as per
Hooke's law In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
, and the scales are
calibrated In measurement technology and metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration standard of known accuracy. Such a standard could be another measurement device of known ...
to take ''g'' into account, allowing the mass ''M'' to be read off. Assuming the gravitational field is equivalent on both sides of the balance, a
balance Balance or balancing may refer to: Common meanings * Balance (ability) in biomechanics * Balance (accounting) * Balance or weighing scale * Balance as in equality or equilibrium Arts and entertainment Film * ''Balance'' (1983 film), a Bulgaria ...
measures relative weight, giving the relative gravitation mass of each object.


Inertial mass

''Inertial mass'' is the mass of an object measured by its resistance to acceleration. This definition has been championed by Ernst MachOri Belkind, "Physical Systems: Conceptual Pathways between Flat Space-time and Matter" (2012) Springer (''Chapter 5.3'') and has since been developed into the notion of
operationalism In research design, especially in psychology, social sciences, life sciences and physics, operationalization or operationalisation is a process of defining the measurement of a phenomenon which is not directly measurable, though its existence is in ...
by
Percy W. Bridgman Percy Williams Bridgman (April 21, 1882 – August 20, 1961) was an American physicist who received the 1946 Nobel Prize in Physics for his work on the physics of high pressures. He also wrote extensively on the scientific method and on other as ...
. The simple
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
definition of mass differs slightly from the definition in the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, but the essential meaning is the same. In classical mechanics, according to
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
, we say that a body has a mass ''m'' if, at any instant of time, it obeys the equation of motion : \mathbf=m \mathbf, where F is the resultant
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
acting on the body and a is the
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
of the body's centre of mass.In its original form, Newton's second law is valid only for bodies of constant mass. For the moment, we will put aside the question of what "force acting on the body" actually means. This equation illustrates how mass relates to the
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
of a body. Consider two objects with different masses. If we apply an identical force to each, the object with a bigger mass will experience a smaller acceleration, and the object with a smaller mass will experience a bigger acceleration. We might say that the larger mass exerts a greater "resistance" to changing its state of motion in response to the force. However, this notion of applying "identical" forces to different objects brings us back to the fact that we have not really defined what a force is. We can sidestep this difficulty with the help of
Newton's third law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
, which states that if one object exerts a force on a second object, it will experience an equal and opposite force. To be precise, suppose we have two objects of constant inertial masses ''m''1 and ''m''2. We isolate the two objects from all other physical influences, so that the only forces present are the force exerted on ''m''1 by ''m''2, which we denote F12, and the force exerted on ''m''2 by ''m''1, which we denote F21. Newton's second law states that : \begin \mathbf & =m_1\mathbf_1,\\ \mathbf & =m_2\mathbf_2, \end where a1 and a2 are the accelerations of ''m''1 and ''m''2, respectively. Suppose that these accelerations are non-zero, so that the forces between the two objects are non-zero. This occurs, for example, if the two objects are in the process of colliding with one another. Newton's third law then states that : \mathbf_=-\mathbf_; and thus : m_1=m_2\frac\!. If is non-zero, the fraction is well-defined, which allows us to measure the inertial mass of ''m''1. In this case, ''m''2 is our "reference" object, and we can define its mass ''m'' as (say) 1 kilogram. Then we can measure the mass of any other object in the universe by colliding it with the reference object and measuring the accelerations. Additionally, mass relates a body's momentum p to its linear
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
v: : \mathbf=m\mathbf, and the body's
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
''K'' to its velocity: : K=\dfracm, \mathbf, ^2. The primary difficulty with Mach's definition of mass is that it fails to take into account the potential energy (or
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
) needed to bring two masses sufficiently close to one another to perform the measurement of mass. This is most vividly demonstrated by comparing the mass of the proton in the nucleus of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
, to the mass of the proton in free space (which is greater by about 0.239%—this is due to the binding energy of deuterium). Thus, for example, if the reference weight ''m''2 is taken to be the mass of the neutron in free space, and the relative accelerations for the proton and neutron in deuterium are computed, then the above formula over-estimates the mass ''m''1 (by 0.239%) for the proton in deuterium. At best, Mach's formula can only be used to obtain ratios of masses, that is, as ''m''1 / ''m''2 =  / . An additional difficulty was pointed out by Henri Poincaré, which is that the measurement of instantaneous acceleration is impossible: unlike the measurement of time or distance, there is no way to measure acceleration with a single measurement; one must make multiple measurements (of position, time, etc.) and perform a computation to obtain the acceleration. Poincaré termed this to be an "insurmountable flaw" in the Mach definition of mass.


Atomic masses

Typically, the mass of objects is measured in terms of the kilogram, which since 2019 is defined in terms of fundamental constants of nature. The mass of an atom or other particle can be compared more precisely and more conveniently to that of another atom, and thus scientists developed the
dalton Dalton may refer to: Science * Dalton (crater), a lunar crater * Dalton (program), chemistry software * Dalton (unit) (Da), the atomic mass unit * John Dalton, chemist, physicist and meteorologist Entertainment * Dalton (Buffyverse), minor ch ...
(also known as the unified atomic mass unit). By definition, 1 Da (one
dalton Dalton may refer to: Science * Dalton (crater), a lunar crater * Dalton (program), chemistry software * Dalton (unit) (Da), the atomic mass unit * John Dalton, chemist, physicist and meteorologist Entertainment * Dalton (Buffyverse), minor ch ...
) is exactly one-twelfth of the mass of a carbon-12 atom, and thus, a carbon-12 atom has a mass of exactly 12 Da.


In relativity


Special relativity

In some frameworks of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, physicists have used different definitions of the term. In these frameworks, two kinds of mass are defined:
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
(invariant mass),It is possible to make a slight distinction between "rest mass" and "invariant mass". For a system of two or more particles, none of the particles are required be at rest with respect to the observer for the system as a whole to be at rest with respect to the observer. To avoid this confusion, some sources will use "rest mass" only for individual particles, and "invariant mass" for systems. and
relativistic mass The word "mass" has two meanings in special relativity: '' invariant mass'' (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity o ...
(which increases with velocity). Rest mass is the Newtonian mass as measured by an observer moving along with the object. ''Relativistic mass'' is the total quantity of energy in a body or system divided by ''c''2. The two are related by the following equation: : m_\mathrm=\gamma (m_\mathrm)\! where \gamma is the
Lorentz factor The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativit ...
: : \gamma = \frac The invariant mass of systems is the same for observers in all inertial frames, while the relativistic mass depends on the observer's frame of reference. In order to formulate the equations of physics such that mass values do not change between observers, it is convenient to use rest mass. The rest mass of a body is also related to its energy ''E'' and the magnitude of its momentum p by the
relativistic energy-momentum equation Relativity may refer to: Physics * Galilean relativity, Galileo's conception of relativity * Numerical relativity, a subfield of computational physics that aims to establish numerical solutions to Einstein's field equations in general relativity ...
: : (m_\mathrm)c^2=\sqrt.\! So long as the system is closed with respect to mass and energy, both kinds of mass are conserved in any given frame of reference. The conservation of mass holds even as some types of particles are converted to others. Matter particles (such as atoms) may be converted to non-matter particles (such as photons of light), but this does not affect the total amount of mass or energy. Although things like heat may not be matter, all types of energy still continue to exhibit mass.For example, a nuclear bomb in an idealized super-strong box, sitting on a scale, would in theory show no change in mass when detonated (although the inside of the box would become much hotter). In such a system, the mass of the box would change only if energy were allowed to escape from the box as light or heat. However, in that case, the removed energy would take its associated mass with it. Letting heat or radiation out of such a system is simply a way to remove mass. Thus, mass, like energy, cannot be destroyed, but only moved from one place to another. Thus, mass and energy do not change into one another in relativity; rather, both are names for the same thing, and neither mass nor energy ''appear'' without the other. Both rest and relativistic mass can be expressed as an energy by applying the well-known relationship ''E'' = ''mc''2, yielding
rest energy The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
and "relativistic energy" (total system energy) respectively: : E_\mathrm=(m_\mathrm)c^2\! : E_\mathrm=(m_\mathrm)c^2\! The "relativistic" mass and energy concepts are related to their "rest" counterparts, but they do not have the same value as their rest counterparts in systems where there is a net momentum. Because the relativistic mass is proportional to the energy, it has gradually fallen into disuse among physicists. There is disagreement over whether the concept remains useful pedagogically. In bound systems, the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
must often be subtracted from the mass of the unbound system, because binding energy commonly leaves the system at the time it is bound. The mass of the system changes in this process merely because the system was not closed during the binding process, so the energy escaped. For example, the binding energy of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
is often lost in the form of gamma rays when the nuclei are formed, leaving nuclides which have less mass than the free particles (
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s) of which they are composed.
Mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physici ...
also holds in macroscopic systems. For example, if one takes exactly one kilogram of ice, and applies heat, the mass of the resulting melt-water will be more than a kilogram: it will include the mass from the
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, de ...
(
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition. Latent heat can be underst ...
) used to melt the ice; this follows from the conservation of energy. This number is small but not negligible: about 3.7 nanograms. It is given by the
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition. Latent heat can be underst ...
of melting ice (334 kJ/kg) divided by the speed of light squared (''c''2 ≈ ).


General relativity

In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, the equivalence principle is the equivalence of
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
and
inertial mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...
. At the core of this assertion is Albert Einstein's idea that the gravitational force as experienced locally while standing on a massive body (such as the Earth) is the same as the ''
pseudo-force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which trea ...
'' experienced by an observer in a non-
inertial In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
(i.e. accelerated) frame of reference. However, it turns out that it is impossible to find an objective general definition for the concept of invariant mass in general relativity. At the core of the problem is the
non-linearity In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many othe ...
of the
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
, making it impossible to write the gravitational field energy as part of the stress–energy tensor in a way that is invariant for all observers. For a given observer, this can be achieved by the stress–energy–momentum pseudotensor.


In quantum physics

In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, the inert mass of a particle appears in the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
as a parameter ''m'': : \frac \ \left( \, \frac \, \right) \ = \ m \, \ddot_i . After quantization, replacing the position vector ''x'' with a
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
, the parameter ''m'' appears in the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
operator: : i\hbar\frac \Psi(\mathbf,\,t) = \left(-\frac\nabla^2 + V(\mathbf)\right)\Psi(\mathbf,\,t). In the ostensibly covariant (relativistically invariant)
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac par ...
, and in
natural units In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge ma ...
, this becomes: : (-i\gamma^\mu\partial_\mu + m) \psi = 0\, where the "
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
" parameter ''m'' is now simply a constant associated with the quantum described by the wave function ψ. In the Standard Model of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
as developed in the 1960s, this term arises from the coupling of the field ψ to an additional field Φ, the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
. In the case of fermions, the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other be ...
results in the replacement of the term ''m''ψ in the Lagrangian with G_ \overline \phi \psi. This shifts the
explanandum An explanandum (a Latin term) is a sentence describing a phenomenon that is to be explained, and the explanans are the sentences adduced as explanations of that phenomenon. For example, one person may pose an ''explanandum'' by asking "Why is there ...
of the value for the mass of each elementary particle to the value of the unknown coupling constant ''G''ψ.


Tachyonic particles and imaginary (complex) mass

A
tachyonic field In physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. Although tachyonic particles (particles that move faster than light) are a purely hypothetical concept that violate a number of essential physical princi ...
, or simply
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such partic ...
, is a
quantum field In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles ...
with an imaginary mass. Although
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such partic ...
s (
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
s that move
faster than light Faster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (). The special theory of relativity implies that only particles with zero ...
) are a purely hypothetical concept not generally believed to exist,Lisa Randall, ''Warped Passages: Unraveling the Mysteries of the Universe's Hidden Dimensions'', p.286: "People initially thought of tachyons as particles travelling faster than the speed of light...But we now know that a tachyon indicates an instability in a theory that contains it. Regrettably for science fiction fans, tachyons are not real physical particles that appear in nature."
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
with imaginary mass have come to play an important
role A role (also rôle or social role) is a set of connected behaviors, rights, moral obligation, obligations, beliefs, and social norm, norms as conceptualized by people in a social situation. It is an expected or free or continuously changing behavi ...
in modern physics and are discussed in popular books on physics.Brian Greene, ''The Elegant Universe'', Vintage Books (2000) Under no circumstances do any excitations ever propagate faster than light in such theories—the presence or absence of a tachyonic mass has no effect whatsoever on the maximum velocity of signals (there is no violation of causality). While the ''field'' may have imaginary mass, any physical particles do not; the "imaginary mass" shows that the system becomes unstable, and sheds the instability by undergoing a type of
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states o ...
called
tachyon condensation A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such parti ...
(closely related to second order phase transitions) that results in
symmetry breaking In physics, symmetry breaking is a phenomenon in which (infinitesimally) small fluctuations acting on a system crossing a critical point decide the system's fate, by determining which branch of a bifurcation is taken. To an outside observe ...
in current models of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. The term "
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such partic ...
" was coined by
Gerald Feinberg Gerald Feinberg (27 May 1933 – 21 April 1992) was a Columbia University physicist, futurist and populist author. He spent a year as a Member of the Institute for Advanced Study, and two years at the Brookhaven Laboratories. Feinberg went to Bro ...
in a 1967 paper, but it was soon realized that Feinberg's model in fact did not allow for superluminal speeds. Instead, the imaginary mass creates an instability in the configuration:- any configuration in which one or more field excitations are tachyonic will spontaneously decay, and the resulting configuration contains no physical tachyons. This process is known as tachyon condensation. Well known examples include the condensation of the Higgs boson in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, and
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
in condensed matter physics. Although the notion of a tachyonic imaginary mass might seem troubling because there is no classical interpretation of an imaginary mass, the mass is not quantized. Rather, the scalar field is; even for tachyonic quantum fields, the field operators at
spacelike In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
separated points still commute (or anticommute), thus preserving causality. Therefore, information still does not propagate faster than light, and solutions grow exponentially, but not superluminally (there is no violation of causality).
Tachyon condensation A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such parti ...
drives a physical system that has reached a local limit and might naively be expected to produce physical tachyons, to an alternate stable state where no physical tachyons exist. Once the tachyonic field reaches the minimum of the potential, its quanta are not tachyons any more but rather are ordinary particles with a positive mass-squared. This is a special case of the general rule, where unstable massive particles are formally described as having a
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
mass, with the real part being their mass in the usual sense, and the imaginary part being the decay rate in
natural units In physics, natural units are physical units of measurement in which only universal physical constants are used as defining constants, such that each of these constants acts as a coherent unit of a quantity. For example, the elementary charge ma ...
. However, in quantum field theory, a particle (a "one-particle state") is roughly defined as a state which is constant over time; i.e., an
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
of the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
. An
unstable particle In particle physics, a resonance is the peak located around a certain energy found in differential cross sections of scattering experiments. These peaks are associated with subatomic particles, which include a variety of bosons, quarks and hadron ...
is a state which is only approximately constant over time; If it exists long enough to be measured, it can be formally described as having a complex mass, with the real part of the mass greater than its imaginary part. If both parts are of the same magnitude, this is interpreted as a
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied Periodic function, periodic force (or a Fourier analysis, Fourier component of it) is equal or close to a natural frequency of the system ...
appearing in a scattering process rather than a particle, as it is considered not to exist long enough to be measured independently of the scattering process. In the case of a tachyon, the real part of the mass is zero, and hence no concept of a particle can be attributed to it. In a
Lorentz invariant In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
theory, the same formulas that apply to ordinary slower-than-light particles (sometimes called "
bradyon The physics technical term massive particle refers to a massful particle which has real non-zero rest mass (such as baryonic matter), the counter-part to the term massless particle. According to special relativity, the velocity of a massive particl ...
s" in discussions of tachyons) must also apply to tachyons. In particular the
energy–momentum relation In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is t ...
: :E^2 = p^2c^2 + m^2c^4 \; (where p is the relativistic momentum of the bradyon and m is its
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
) should still apply, along with the formula for the total energy of a particle: :E = \frac. This equation shows that the total energy of a particle (bradyon or tachyon) contains a contribution from its rest mass (the "rest mass–energy") and a contribution from its motion, the kinetic energy. When ''v'' is larger than ''c'', the denominator in the equation for the energy is "imaginary", as the value under the radical is negative. Because the total
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
must be
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
, the numerator must ''also'' be imaginary: i.e. the
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
m must be imaginary, as a pure imaginary number divided by another pure imaginary number is a real number.


See also

*
Mass versus weight In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than a second object, if the first object has greater mass, and t ...
*
Effective mass (spring–mass system) In a real spring–mass system, the spring has a non-negligible mass m. Since not all of the spring's length moves at the same velocity v as the suspended mass M, its kinetic energy is not equal to \tfrac m v^2. As such, m cannot be simply added t ...
*
Effective mass (solid-state physics) In solid state physics, a particle's effective mass (often denoted m^*) is the mass that it ''seems'' to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. ...
*
Extension (metaphysics) In metaphysics, extension signifies both 'stretching out' (Latin: ''extensio'') as well as later 'taking up space', and most recently, spreading one's internal mental cognition into the external world. The history of thinking about ''extension'' ca ...
*
International System of Quantities The International System of Quantities (ISQ) consists of the quantities used in physics and in modern science in general, starting with basic quantities such as length and mass, and the relationships between those quantities. This system underli ...
* 2019 redefinition of SI base units


Notes


References


External links

* * * * * * * Jim Baggott (27 September 2017)
The Concept of Mass
(video) published by the Royal Institution on
YouTube YouTube is a global online video platform, online video sharing and social media, social media platform headquartered in San Bruno, California. It was launched on February 14, 2005, by Steve Chen, Chad Hurley, and Jawed Karim. It is owned by ...
. {{Authority control Physical quantities SI base quantities Moment (physics)