Magnetic level gauge
   HOME

TheInfoList



OR:

A magnetic level
gauge Gauge ( or ) may refer to: Measurement * Gauge (instrument), any of a variety of measuring instruments * Gauge (firearms) * Wire gauge, a measure of the size of a wire ** American wire gauge, a common measure of nonferrous wire diameter, ...
is a type of
level sensor Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers ...
, i.e., a device used to measure the level of
fluids In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any she ...
. A magnetic level gauge includes a “floatable” device that can float both in high and low
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
fluids. Magnetic level gauges may also be designed to accommodate severe environmental conditions up to 210 bars at 370 °C.


Magnetic level sensors

Magnetic float level sensors involve the use of a permanent magnet sealed inside a float whose rise and fall causes the opening or closing of a mechanical switch, either through direct contact or in proximity of a reed switch. With mechanically actuated floats, the float is directly connected to a
micro switch A miniature snap-action switch, also trademarked and frequently known as a micro switch, is an electric switch that is actuated by very little physical force, through the use of a tipping-point mechanism, sometimes called an "over-center" mechan ...
. For both magnetic and mechanical float level sensors, chemical compatibility,
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
,
specific gravity Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ...
(density),
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
, and
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
affect the selection of the stem and the float. For example, larger floats may be used with liquids with specific gravities as low as 0.5 while still maintaining buoyancy. The choice of float material is also influenced by temperature-induced changes in specific gravity and viscosity – changes that directly affect buoyancy.


Explanation

Exploring the
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
behind this design, requires looking at basic magnetism. A standard bar magnet has two magnetic poles:
north North is one of the four compass points or cardinal directions. It is the opposite of south and is perpendicular to east and west. ''North'' is a noun, adjective, or adverb indicating direction or geography. Etymology The word ''north ...
and south. (The north will read positive on a gauss meter and the south will read negative.) Magnetic field are mapped using magnetic flux lines. These lines are a graphical representation of the magnetic field density. They show the direction of flow for the magnetic field and represent relative field strength – the closer together the lines are, the stronger the magnetic field. Flux lines will always travel from the north pole to the nearest south pole and always leave and enter surfaces at 90°, or perpendicular to the surface. They can only travel in straight lines or curved paths, which means they can never make a sudden, abrupt change in direction. Flux lines will also always follow a path of least magnetic resistance. Most importantly, they can never cross one another.


Considerations

When selecting a magnetic level gauge it is important to take into account the strength of the magnetic field. The magnetic field is the heart of the magnetic level gauge – the stronger the field, the more reliable the instrument will function. Some manufacturers rely on a single magnet for their magnetic level gauges which causes the strength of the north field to be identical to, and as weak as, the south field. It is apparent that at the location of the indicators, switches and transmitters, the field would not be as intense. Some manufacturers use a single annular ring magnet, others use a series of single bar magnets in a circular array in their float design. In this design the relative field strength of the north and south poles will be equal to one another and less than that of a dual magnet design. Moreover, the field strength as you travel around the circumference will have high and low spots as you pass between the individual bar magnets.


References

{{Reflist Measuring instruments