Magnetic detector
   HOME

TheInfoList



OR:

The magnetic detector or Marconi magnetic detector, sometimes called the "Maggie", was an early radio wave detector used in some of the first
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
s to receive
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
messages during the
wireless telegraphy Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term ''wireless telegraphy'' was also used for other experimental technologies for ...
era around the turn of the 20th century. Developed in 1902 by radio pioneer
Guglielmo Marconi Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi ...
from a method invented in 1895 by New Zealand physicist
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
it was used in Marconi wireless stations until around 1912, when it was superseded by
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
s. It was widely used on ships because of its reliability and insensitivity to vibration. A magnetic detector was part of the wireless apparatus in the radio room of the RMS ''Titanic'' which was used to summon help during its famous 15 April 1912 sinking. copied on Stephenson's marconigraph.com personal website


History

The primitive spark gap radio transmitters used during the first three decades of radio (1886-1916) could not transmit
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sou ...
(sound) and instead transmitted information by
wireless telegraphy Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term ''wireless telegraphy'' was also used for other experimental technologies for ...
; the operator switched the transmitter on and off with a
telegraph key A telegraph key is a specialized electrical switch used by a trained operator to transmit text messages in Morse code in a telegraphy system. Keys are used in all forms of electrical telegraph systems, including landline (also called wir ...
, creating pulses of radio waves to spell out text messages in
Morse code Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called ''dots'' and ''dashes'', or ''dits'' and ''dahs''. Morse code is named after Samuel Morse, one ...
. So the radio receiving equipment of the time did not have to convert the radio waves into sound like modern receivers, but merely detect the presence or absence of the radio signal. The device that did this was called a
detector A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
. The first widely used detector was the
coherer The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Bran ...
, invented in 1890. The coherer was a very poor detector, insensitive and prone to false triggering due to impulsive noise, which motivated much research to find better radio wave detectors.
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
had first used the
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
of iron to detect Hertzian waves in 1896 by the demagnetization of an iron needle when a radio signal passed through a coil around the needle, however the needle had to be remagnetized so this was not suitable for a continuous detector. Many other wireless researchers such as E. Wilson, C. Tissot,
Reginald Fessenden Reginald Aubrey Fessenden (October 6, 1866 – July 22, 1932) was a Canadian-born inventor, who did a majority of his work in the United States and also claimed U.S. citizenship through his American-born father. During his life he received hundre ...
,
John Ambrose Fleming Sir John Ambrose Fleming FRS (29 November 1849 – 18 April 1945) was an English electrical engineer and physicist who invented the first thermionic valve or vacuum tube, designed the radio transmitter with which the first transatlantic r ...
,
Lee De Forest Lee de Forest (August 26, 1873 – June 30, 1961) was an American inventor and a fundamentally important early pioneer in electronics. He invented the first electronic device for controlling current flow; the three-element " Audion" triode v ...
, J.C. Balsillie, and L. Tieri had subsequently devised detectors based on hysteresis, but none had become widely used due to various drawbacks. Many earlier versions had a rotating magnet above a stationary iron band with coils on it. Phillips (1980) ''Early radio wave detectors'', p. 103-105
/ref> This type was only periodically sensitive, when the magnetic field was changing, which occurred as the magnetic poles passed the iron. During his transatlantic radio communication experiments in December 1902 Marconi found the
coherer The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Bran ...
to be too unreliable and insensitive for detecting the very weak radio signals from long distance transmissions. It was this need that drove him to develop his magnetic detector. Marconi devised a more effective configuration with a moving iron band driven by a clockwork motor passing by stationary magnets and coils, resulting in a continuous supply of iron that was changing magnetization, and thus continuous sensitivity (Rutherford claimed he had also invented this configuration). The Marconi magnetic detector was the "official" detector used by the
Marconi Company The Marconi Company was a British telecommunications and engineering company that did business under that name from 1963 to 1987. Its roots were in the Wireless Telegraph & Signal Company founded by Italian inventor Guglielmo Marconi in 189 ...
from 1902 through 1912, when the company began converting to the Fleming valve and
Audion The Audion was an electronic detecting or amplifying vacuum tube invented by American electrical engineer Lee de Forest in 1906.De Forest patented a number of variations of his detector tubes starting in 1906. The patent that most clearly covers ...
-type vacuum tubes. It was used through 1918.


Description

See drawing at right. The Marconi version consisted of an endless iron band (''B'') built up of 70 strands of number 40 gage silk-covered
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
wire Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample diameter 40 mm A wire is a flexible strand of metal. Wire is co ...
. In operation, the band passes over two grooved pulleys rotated by a wind-up
clockwork Clockwork refers to the inner workings of either mechanical devices called clocks and watches (where it is also called the movement) or other mechanisms that work similarly, using a series of gears driven by a spring or weight. A clockwork mech ...
motor. The iron band passes through the center of a glass tube which is close wound with a single layer along several millimeters with number 36 gage silk-covered
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
wire. This coil (''C'') functions as the
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the up ...
excitation coil. Over this winding is a small bobbin wound with wire of the same gauge to a resistance of about 140
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
s. This coil (''D'') functions as the
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum * Digital audio, representation of sou ...
pickup coil. Around these coils two permanent
horseshoe magnet A horseshoe magnet is a magnet made in the shape of a horseshoe or a U-shape and has become the most widely recognized symbol for magnets. It was invented by William Sturgeon in 1825. This type of magnet can be either a permanent magnet or ...
s are arranged to
magnetize Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
the iron band as it passes through the glass tube.


How it works

The device works by
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
of the magnetization in the iron wires. The
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel ...
s are arranged to create two opposite
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s each directed toward (or away) from the center of the coils in opposite directions along the wire. This functions to magnetize the iron band along its axis, first in one direction as it approaches the center of the coils, then reverse its magnetism to the opposite direction as it leaves from the other side of the coil. Due to the hysteresis (
coercivity Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in ...
) of the iron, a certain threshold magnetic field (the coercive field, ''H''c) is required to reverse the magnetization. So the magnetization in the moving wires does not reverse in the center of the device where the field reverses, but some way toward the departing side of the wires, when the field of the second magnet reaches ''H''c. Although the wire itself is moving through the coil, in the absence of a radio signal the location where the magnetization "flips" is stationary with respect to the pickup coil, so there is no flux change and no voltage is induced in the pickup coil. The radio signal from the
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
(''A'') is received by a tuner (''not shown'') and passed through the excitation coil ''C'', the other end of which is connected to
ground Ground may refer to: Geology * Land, the surface of the Earth not covered by water * Soil, a mixture of clay, sand and organic matter present on the surface of the Earth Electricity * Ground (electricity), the reference point in an electrical c ...
(''E''). The rapidly reversing magnetic field from the coil exceeds the coercivity ''H''c and cancels the hysteresis of the iron, causing the magnetization change to suddenly move up the wire to the center, between the magnets, where the field reverses. This had an effect similar to thrusting a magnet into the coil, causing the magnetic flux through the pickup coil ''D'' to change, inducing a current pulse in the pickup coil. The audio pickup coil is connected to a telephone receiver ( earphone) (''T'') which converts the current pulse to
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by ...
. The radio signal from a spark gap transmitter consisted of pulses of radio waves (
damped wave Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples i ...
s) which repeated at an audio rate, around several hundred per second. Each pulse of radio waves produced a pulse of current in the earphone, so the signal sounded like a musical tone or buzz in the earphone.


Technical details

The iron band was turned by a
mainspring A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. ''Winding'' the timepiece, by turning a knob or key, stores energy in ...
and clockwork mechanism inside the case. Differing values have been given for the speed of the band, from 1.6 to 7.5 cm per second; the device could probably function over a wide range of band speeds. The operator had to keep the mainspring wound up, using a crank on the side. Operators would sometimes forget to wind it, so the band would stop turning and the detector stop working, sometimes in the middle of a radio message. The detector produced electronic noise that was heard in the earphone as a "hissing" or "roaring" sound in the background, somewhat fatiguing to listen to. Phillips (1980) ''Early radio wave detectors'', p. 98, 102, 106
/ref> This was Barkhausen noise due to the Barkhausen effect in the iron. As the magnetic field in a given area of the iron wire changed as it moved through the detector, the microscopic
domain wall A domain wall is a type of topological soliton that occurs whenever a discrete symmetry is spontaneously broken. Domain walls are also sometimes called kinks in analogy with closely related kink solution of the sine-Gordon model or models with pol ...
s between
magnetic domain A magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When c ...
s in the iron moved in a series of jerks, as they got hung up on defects in the iron crystal lattice, then pulled free. Each jerk produced a tiny change in the magnetic field through the coil, and induced a pulse of noise. Because the output was an audio alternating current and not a direct current, the detector could only be used with earphones and not with the common recording instrument used in coherer radiotelegraphy receivers, the siphon paper tape recorder. From a technical standpoint, several subtle prerequisites are necessary for operation. The strength of the magnetic field of the permanent magnets at the iron band must be of the same order of magnitude as the strength of the field generated by the radio frequency excitation coil, allowing the radio frequency signal to exceed the threshold hysteresis (coercivity) of the iron. Also, the impedance of the tuner that supplies the radio signal must be low to
match A match is a tool for starting a fire. Typically, matches are made of small wooden sticks or stiff paper. One end is coated with a material that can be ignited by friction generated by striking the match against a suitable surface. Wooden mat ...
the low impedance of the excitation coil, requiring special tuner design considerations. The impedance of the telephone earphone must roughly match the impedance of the audio pickup coil, which is a few hundred ohms. The iron band moves a few millimeters per second. The magnetic detector was much more sensitive than the
coherer The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Bran ...
s commonly in use at the time, although not as sensitive as the Fleming valve, which began to replace it around 1912. In the ''Handbook Of Technical Instruction For Wireless Telegraphists'' by: J. C. Hawkhead (Second Edition Revised by H. M. Dowsett) on pp 175 are detailed instructions and specifications for operation and maintenance of Marconi's magnetic detector.


References


External links

*{{Commons category inline
The Marconi magnetic detector
From the book "A Handbook of Wireless Telegraphy" (1913) by J. Erskine-Murray. D.Sc.
Magnetic detector basics
History of radio Radio electronics Detectors