Magnesium diboride
   HOME

TheInfoList



OR:

Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
at 39 K (−234 °C). In terms of its composition, MgB2 differs strikingly from most low-temperature superconductors, which feature mainly transition metals. Its superconducting mechanism is primarily described by
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
.


Superconductivity

Magnesium diboride's superconducting properties were discovered in 2001. Its critical temperature (''T''c) of is the highest amongst conventional superconductors. Among conventional ( phonon-mediated) superconductors, it is unusual. Its electronic structure is such that there exist two types of
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
at the Fermi level with widely differing behaviours, one of them ( sigma-bonding) being much more strongly superconducting than the other ( pi-bonding). This is at odds with usual theories of phonon-mediated superconductivity which assume that all electrons behave in the same manner. Theoretical understanding of the properties of MgB2 has nearly been achieved by modelling two energy gaps. In 2001 it was regarded as behaving more like a metallic than a
cuprate superconductor Cuprate superconductors are a family of high-temperature superconducting materials made of layers of copper oxides (CuO2) alternating with layers of other metal oxides, which act as charge reservoirs. At ambient pressure, cuprate superconductor ...
.


Semi-Meissner state

Using
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
and the known energy gaps of the pi and sigma bands of electrons (2.2 and 7.1 meV, respectively), the pi and sigma bands of electrons have been found to have two different
coherence length In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves dif ...
s (51 nm and 13 nm, respectively). The corresponding
London penetration depth In superconductors, the London penetration depth (usually denoted as \lambda or \lambda_L) characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to e^ times that of the magnetic field at the surface ...
s are 33.6 nm and 47.8 nm. This implies that the Ginzburg-Landau parameters are 0.66±0.02 and 3.68, respectively. The first is less than 1/ and the second is greater, therefore the first seems to indicate marginal type I superconductivity and the second type II superconductivity. It has been predicted that when two different bands of electrons yield two quasiparticles, one of which has a coherence length that would indicate type I superconductivity and one of which would indicate type II, then in certain cases, vortices attract at long distances and repel at short distances. In particular, the potential energy between
vortices In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
is minimized at a critical distance. As a consequence there is a conjectured new phase called the
semi-Meissner state Type-1.5 superconductors are multicomponent superconductors characterized by two or more coherence lengths, at least one of which is shorter than the magnetic field penetration length \lambda, and at least one of which is longer. This is in contr ...
, in which vortices are separated by the critical distance. When the applied flux is too small for the entire superconductor to be filled with a lattice of vortices separated by the critical distance, then there are large regions of type I superconductivity, a Meissner state, separating these domains. Experimental confirmation for this conjecture has arrived recently in MgB2 experiments at 4.2 Kelvin. The authors found that there are indeed regimes with a much greater density of vortices. Whereas the typical variation in the spacing between Abrikosov vortices in a type II superconductor is of order 1%, they found a variation of order 50%, in line with the idea that vortices assemble into domains where they may be separated by the critical distance. The term type-1.5 superconductivity was coined for this state.


Synthesis

Magnesium diboride was synthesized and its structure confirmed in 1953. The simplest synthesis involves high temperature reaction between boron and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
powders. Formation begins at 650 °C; however, since magnesium metal melts at 652 °C, the reaction may involve diffusion of magnesium vapor across boron grain boundaries. At conventional reaction temperatures,
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
is minimal, although grain recrystallization is sufficient for Josephson quantum tunnelling between grains. Superconducting magnesium diboride wire can be produced through the powder-in-tube (PIT) ''ex situ'' and ''in situ'' processes. In the ''in situ'' variant, a mixture of boron and magnesium is reduced in diameter by conventional
wire drawing Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through a single, or series of, drawing die(s). There are many applications for wire drawing, including electrical wiring, cables, tension-loa ...
. The wire is then heated to the reaction temperature to form MgB2. In the ''ex situ'' variant, the tube is filled with MgB2 powder, reduced in diameter, and sintered at 800 to 1000 °C. In both cases, later hot isostatic pressing at approximately 950 °C further improves the properties. An alternative technique, disclosed in 2003, employs reactive liquid infiltration of magnesium inside a granular preform of boron powders and was called Mg-RLI technique. The method allowed the manufacture of both high density (more than 90% of the theoretical density for MgB2) bulk materials and special hollow fibers. This method is equivalent to similar melt growth based methods such as the Infiltration and Growth Processing method used to fabricate bulk YBCO superconductors where the non-superconducting Y2BaCuO5 is used as granular preform inside which YBCO based liquid phases are infiltrated to make superconductive YBCO bulk. This method has been copied and adapted for MgB2 and rebranded as Reactive Mg Liquid Infiltration. The process of Reactive Mg Liquid Infiltration in a boron preform to obtain MgB2 has been a subject of patent applications by the Italian company Edison S.p.A. Hybrid physical–chemical vapor deposition (HPCVD) has been the most effective technique for depositing magnesium diboride (MgB2) thin films. The surfaces of MgB2 films deposited by other technologies are usually rough and
non-stoichiometric In chemistry, non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); m ...
. In contrast, the HPCVD system can grow high-quality ''in situ'' pure MgB2 films with smooth surfaces, which are required to make reproducible uniform Josephson junctions, the fundamental element of superconducting circuits.


Electromagnetic properties

Properties depend greatly on composition and fabrication process. Many properties are anisotropic due to the layered structure. 'Dirty' samples, e.g., with oxides at the crystal boundaries, are different from 'clean' samples. *The highest superconducting transition temperature ''T''c is 39 K. *MgB2 is a type-II superconductor, i.e. increasing magnetic field gradually penetrates into it. *Maximum critical current (''J''c) is: 105 A/m2 at 20 T, 106 A/m2 at 18 T, 107 A/m2 at 15 T, 108 A/m2 at 10 T, 109 A/m2 at 5 T. *As of 2008 :
Upper critical field For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity (zero resistance) and by the complete expulsi ...
(Hc2): (parallel to ''ab'' planes) is ~14 T, (perpendicular to ''ab'' planes) ~3 T, in thin films up to 74 T, in fibers up to 55 T.


Improvement by doping

Various means of doping MgB2 with carbon (e.g. using 10%
malic acid Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
) can improve the
upper critical field For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity (zero resistance) and by the complete expulsi ...
and the maximum current density (also with
polyvinyl acetate Polyvinyl acetate (PVA, PVAc, poly(ethenyl ethanoate)), commonly known as wood glue, PVA glue, white glue, carpenter's glue, school glue, or Elmer's glue in the US, is a widely available adhesive used for porous materials like wood, paper, and ...
). 5% doping with carbon can raise Hc2 from 16 to 36 T while lowering ''T''c only from 39 K to 34 K. The maximum critical current (''J''c) is reduced, but doping with TiB2 can reduce the decrease. (Doping MgB2 with Ti is patented.) The maximum critical current (''J''c) in magnetic field is enhanced greatly (approx double at 4.2 K) by doping with ZrB2. Even small amounts of doping lead both bands into the type II regime and so no semi-Meissner state may be expected.


Thermal conductivity

MgB2 is a multi-band superconductor, that is each Fermi surface has different superconducting energy gap. For MgB2, sigma bond of boron is strong, and it induces large s-wave superconducting gap, and pi bond is weak and induces small s-wave gap. The quasiparticle states of the vortices of large gap are highly confined to the vortex core. On the other hand, the quasiparticle states of small gap are loosely bound to the vortex core. Thus they can be delocalized and overlap easily between adjacent vortices. Such delocalization can strongly contribute to the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, which shows abrupt increase above Hc1.


Possible applications


Superconductors

Superconducting properties and low cost make magnesium diboride attractive for a variety of applications. For those applications, MgB2 powder is compressed with silver metal (or 316 stainless steel) into wire and sometimes tape via the Powder-in-tube process. File:MgB2powder2.jpg File:pit_process.gif File:MgB2tape.jpg In 2006 a 0.5 tesla open
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
superconducting magnet system was built using 18 km of MgB2 wires. This MRI used a closed-loop cryocooler, without requiring externally supplied cryogenic liquids for cooling. "...the next generation MRI instruments must be made of MgB2 coils instead of NbTi coils, operating in the 20–25 K range without liquid helium for cooling. ... Besides the magnet applications MgB2 conductors have potential uses in superconducting transformers, rotors and transmission cables at temperatures of around 25 K, at fields of 1 T." A project at CERN to make MgB2 cables has resulted in superconducting test cables able to carry 20,000 amperes for extremely high current distribution applications, such as the high luminosity upgrade of the Large Hadron Collider. The
IGNITOR Ignitor is the Italian name for a planned tokamak device, developed by ENEA. , the device has not been constructed. Started in 1977 by Prof. Bruno Coppi at MIT, Ignitor based on the 1970s Alcator machine at MIT which pioneered the high magnetic ...
tokamak A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being ...
design was based on MgB2 for its poloidal coils.Ignitor fact sheet
/ref> Thin coatings can be used in superconducting radio frequency cavities to minimize energy loss and reduce the inefficiency of liquid helium cooled niobium cavities. Because of the low cost of its constituent elements, MgB2 has promise for use in superconducting low to medium field magnets, electric motors and generators, fault current limiters and current leads.


Propellants, explosives, pyrotechnics

Unlike elemental boron whose combustion is incomplete through the glassy oxide layered impeding oxygen diffusion, magnesium diboride burns completely when ignited in oxygen or in mixtures with oxidizers. Thus magnesium boride has been proposed as fuel in ram jets. In addition the use of MgB2 in blast-enhanced explosives and propellants has been proposed for the same reasons. Most recently it could be shown that
decoy flare A flare or decoy flare is an aerial infrared countermeasure used by a plane or helicopter to counter an infrared homing ("heat-seeking") surface-to-air missile or air-to-air missile. Flares are commonly composed of a pyrotechnic composition base ...
s containing magnesium diboride/
Teflon Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. It is one of the best-known and widely applied PFAS. The commonly known brand name of PTFE-based composition is Teflon by Chemo ...
/ Viton display 30–60% increased spectral efficiency, Eλ (J g−1sr−1), compared to classical Magnesium/Teflon/Viton(MTV) payloads. An application of magnesium diboride to hybrid rocket propulsion has also been investigated, mixing the compound in paraffin wax fuel grains to improve mechanical properties and combustion characteristics.Bertoldi, AEM, Bouziane, M, Lee, D, Hendrick, P, Vandevelde, C, Lefebvre, M, and Veras, CAG. "Development and Test of Magnesium-based Additive for Hybrid Rockets Fuels." 15th International Conference on Space Operations, 2018.


References


External links


Essential Science Indicators on MgB2 (1992 – May 2002)Old material makes a new debut
, US Department of Energy Research News, 2001 {{DEFAULTSORT:Magnesium Diboride Borides Magnesium compounds Superconductors Non-stoichiometric compounds Ceramic materials