International Atomic Time
   HOME

TheInfoList



OR:

International Atomic Time (abbreviated TAI, from its French name ) is a high-precision atomic coordinate
time standard A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters o ...
based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...
s in over 80 national laboratories worldwide. It is a continuous scale of time, without leap seconds, and it is the principal realisation of
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses ...
(with a fixed offset of
epoch In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided ...
). It is the basis for
Coordinated Universal Time Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of Solar time#Mean solar time, mean solar time (such as Universal Time, UT1) at 0° longitude (at the I ...
(UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds. UTC deviates from TAI by a number of whole seconds. , when another
leap second A leap second is a one- second adjustment that is occasionally applied to Coordinated Universal Time (UTC), to accommodate the difference between precise time ( International Atomic Time (TAI), as measured by atomic clocks) and imprecise obser ...
was put into effect, UTC is currently exactly 37 seconds behind TAI. The 37 seconds result from the initial difference of 10 seconds at the start of 1972, plus 27 leap seconds in UTC since 1972. TAI may be reported using traditional means of specifying days, carried over from non-uniform time standards based on the rotation of the Earth. Specifically, both
Julian day The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
s and the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years d ...
are used. TAI in this form was synchronised with
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
at the beginning of 1958, and the two have drifted apart ever since, due primarily to the slowing rotation of the Earth.


Operation

TAI is a weighted average of the time kept by over 450
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...
s in over 80 national laboratories worldwide. The majority of the clocks involved are caesium clocks; the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. ...
(SI) definition of the
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ea ...
is based on
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
. The clocks are compared using GPS signals and two-way satellite time and frequency transfer. Due to the
signal averaging Signal averaging is a signal processing technique applied in the time domain, intended to increase the strength of a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-noise ratio (SNR) wi ...
TAI is an
order of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
more stable than its best constituent clock. The participating institutions each broadcast, in real time, a frequency signal with timecodes, which is their estimate of TAI. Time codes are usually published in the form of UTC, which differs from TAI by a well-known integer number of seconds. These time scales are denoted in the form ''UTC(NPL)'' in the UTC form, where ''NPL'' here identifies the National Physical Laboratory, UK. The TAI form may be denoted ''TAI(NPL)''. The latter is not to be confused with ''TA(NPL)'', which denotes an independent atomic time scale, not synchronised to TAI or to anything else. The clocks at different institutions are regularly compared against each other. The
International Bureau of Weights and Measures The International Bureau of Weights and Measures (french: Bureau international des poids et mesures, BIPM) is an intergovernmental organisation, through which its 59 member-states act together on measurement standards in four areas: chemistry ...
(BIPM, France), combines these measurements to retrospectively calculate the weighted average that forms the most stable time scale possible. This combined time scale is published monthly in "Circular T", and is the canonical TAI. This time scale is expressed in the form of tables of differences UTC − UTC(''k'') (equal to TAI − TAI(''k'')) for each participating institution ''k''. The same circular also gives tables of TAI − TA(''k''), for the various unsynchronised atomic time scales. Errors in publication may be corrected by issuing a revision of the faulty Circular T or by errata in a subsequent Circular T. Aside from this, once published in Circular T, the TAI scale is not revised. In hindsight, it is possible to discover errors in TAI and to make better estimates of the true proper time scale. Since the published circulars are definitive, better estimates do not create another version of TAI; it is instead considered to be creating a better realisation of
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses ...
(TT).


History

Early atomic time scales consisted of
quartz clock Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at leas ...
s with frequencies calibrated by a single atomic clock; the atomic clocks were not operated continuously. Atomic timekeeping services started experimentally in 1955, using the first caesium atomic clock at the National Physical Laboratory, UK (NPL). It was used as a basis for calibrating the quartz clocks at the
Royal Greenwich Observatory The Royal Observatory, Greenwich (ROG; known as the Old Royal Observatory from 1957 to 1998, when the working Royal Greenwich Observatory, RGO, temporarily moved south from Greenwich to Herstmonceux) is an observatory situated on a hill in ...
and to establish a time scale, called Greenwich Atomic (GA). The
United States Naval Observatory United States Naval Observatory (USNO) is a scientific and military facility that produces geopositioning, navigation and timekeeping data for the United States Navy and the United States Department of Defense. Established in 1830 as the Depo ...
began the A.1 scale on 13 September 1956, using an Atomichron commercial atomic clock, followed by the NBS-A scale at the National Bureau of Standards,
Boulder, Colorado Boulder is a home rule city that is the county seat and most populous municipality of Boulder County, Colorado, United States. The city population was 108,250 at the 2020 United States census, making it the 12th most populous city in Colora ...
on 9 October 1957. The International Time Bureau (BIH) began a time scale, Tm or AM, in July 1955, using both local caesium clocks and comparisons to distant clocks using the phase of VLF radio signals. The BIH scale, A.1, and NBS-A were defined by an
epoch In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided ...
at the beginning of 1958 The procedures used by the BIH evolved, and the name for the time scale changed: "A3" in 1964 and "TA(BIH)" in 1969. The SI second was defined in terms of the caesium atom in 1967. From 1971 to 1975 the
General Conference on Weights and Measures The General Conference on Weights and Measures (GCWM; french: Conférence générale des poids et mesures, CGPM) is the supreme authority of the International Bureau of Weights and Measures (BIPM), the intergovernmental organization established i ...
and the International Committee for Weights and Measures made a series of decisions which designated the BIPM time scale International Atomic Time (TAI). In the 1970s, it became clear that the clocks participating in TAI were ticking at different rates due to gravitational time dilation, and the combined TAI scale, therefore, corresponded to an average of the altitudes of the various clocks. Starting from the Julian Date 2443144.5 (1 January 1977 00:00:00), corrections were applied to the output of all participating clocks, so that TAI would correspond to proper time at the geoid (
mean sea level There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ...
). Because the clocks were, on average, well above sea level, this meant that TAI slowed by about one part in a trillion. The former uncorrected time scale continues to be published under the name ''EAL'' (''Échelle Atomique Libre'', meaning ''Free Atomic Scale''). The instant that the gravitational correction started to be applied serves as the epoch for
Barycentric Coordinate Time Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
(TCB),
Geocentric Coordinate Time Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satelli ...
(TCG), and
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses ...
(TT), which represent three fundamental time scales in the solar system. All three of these time scales were defined to read JD 2443144.5003725 (1 January 1977 00:00:32.184) exactly at that instant. TAI was henceforth a realisation of TT, with the equation TT(TAI) = TAI + 32.184 s. The continued existence of TAI was questioned in a 2007 letter from the BIPM to the ITU-R which stated, "In the case of a redefinition of UTC without leap seconds, the CCTF would consider discussing the possibility of suppressing TAI, as it would remain parallel to the continuous UTC."


Relation to UTC

Contrary to TAI, UTC is a discontinuous time scale. It is occasionally adjusted by leap seconds. Between these adjustments, it is composed of segments that are mapped to atomic time by a constant offset. From its beginning in 1961 through December 1971, the adjustments were made regularly in fractional leap seconds so that UTC approximated UT2. Afterward, these adjustments were made only in whole seconds to approximate UT1. This was a compromise arrangement in order to enable a publicly broadcast time scale. The less frequent whole-second adjustments meant that the time scale would be more stable and easier to synchronize internationally. The fact that it continues to approximate UT1 means that tasks such as
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation ...
which require a source of Universal Time continue to be well served by the public broadcast of UTC.


See also

*
Clock synchronization Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks ...
* Time and frequency transfer


Notes


References

* *


Footnotes


Bibliography

* *


External links


BIPM technical services: Time Metrology

Time and Frequency Section - National Physical Laboratory, UK

IERS website

NIST Web Clock FAQs



NIST-F1 Cesium Fountain Atomic Clock
*

*
Standard of time definition: UTC, GPS, LORAN and TAI
{{Authority control Time scales