Integral Fast Reactor
   HOME

TheInfoList



OR:

The integral fast reactor (IFR, originally advanced liquid-metal reactor) is a design for a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
using
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s and no neutron moderator (a "fast" reactor). IFR would breed more fuel and is distinguished by a
nuclear fuel cycle The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in w ...
that uses reprocessing via
electrorefining Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a ...
at the reactor site. The U.S. Department of Energy began designing an IFR in 1984 and built a prototype, the Experimental Breeder Reactor II. On April 3, 1986, two tests demonstrated the safety of the IFR concept. These tests simulated accidents involving loss of coolant flow. Even with its normal shutdown devices disabled, the reactor shut itself down safely without overheating anywhere in the system. The IFR project was canceled by the
US Congress The United States Congress is the legislature of the federal government of the United States. It is bicameral, composed of a lower body, the House of Representatives, and an upper body, the Senate. It meets in the U.S. Capitol in Washin ...
in 1994, three years before completion.The IFR
at Argonne National Laboratory, ''www.ne.anl.gov'', accessed 1 November 2022
The proposed Generation IV Sodium-Cooled Fast Reactor is its closest surviving
fast breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile mater ...
design. Other countries have also designed and operated
fast reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
s.
S-PRISM PRISM (Power Reactor Innovative Small Module, sometimes S-PRISM from SuperPRISM) is a nuclear power plant design by GE Hitachi Nuclear Energy (GEH). Design The S-PRISM represents GEH's Generation IV reactor solution to closing the nuclear fu ...
(from SuperPRISM), also called PRISM (Power Reactor Innovative Small Module), is the name of a nuclear power plant design by
GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy (GEH) is a provider of advanced reactors and nuclear services. It is headquartered in Wilmington, North Carolina, United States. Established in June 2007, GEH is a nuclear alliance created by General Electric and Hitach ...
(GEH) based on the IFR. In 2022, GEH and
Terrapower TerraPower is an American nuclear reactor design and development engineering company headquartered in Bellevue, Washington. TerraPower is developing a class of nuclear fast reactors termed traveling wave reactors (TWR). TWR places a small core ...
began exploring locating 5 Natrium sodium fast reactors based nuclear power plant design incorporating a PRISM reactor based on the IFR plus Terrapower's Traveling Wave design with a molten salt storage system in Kemmerer, Wyoming.


History

Research on IFR reactors began in 1984 at Argonne National Laboratory in Argonne, Illinois. as a part of the U.S. Department of Energy's national laboratory system, and currently operated on a contract by the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private university, private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park, Chicago, Hyde Park neighborhood. The University of Chic ...
. Argonne previously had a branch campus named "Argonne West" in
Idaho Falls Idaho Falls ( Shoshoni: Dembimbosaage) is a city in and the county seat of Bonneville County, Idaho, United States. It is the state's largest city outside the Boise metropolitan area. As of the 2020 census, the population of Idaho Falls was 6 ...
,
Idaho Idaho ( ) is a state in the Pacific Northwest region of the Western United States. To the north, it shares a small portion of the Canada–United States border with the province of British Columbia. It borders the states of Montana and Wyomi ...
that is now part of the Idaho National Laboratory. In the past, at the branch campus, physicists from Argonne West built what was known as the Experimental Breeder Reactor II (EBR-II). In the meantime, physicists at Argonne designed the IFR concept, and it was decided that the EBR-II would be converted to an IFR. Charles Till, a Canadian physicist from Argonne, was the head of the IFR project, and Yoon Chang was the deputy head. Till was positioned in Idaho, while Chang was in Illinois.


Cancellation

With the election of President
Bill Clinton William Jefferson Clinton ( né Blythe III; born August 19, 1946) is an American politician who served as the 42nd president of the United States from 1993 to 2001. He previously served as governor of Arkansas from 1979 to 1981 and agai ...
in 1992, and the appointment of
Hazel O'Leary Hazel Reid O'Leary (born May 17, 1937) is an American lawyer, politician and university administrator who served as the 7th United States secretary of energy from 1993 to 1997. A member of the Democratic Party, O'Leary was the first woman and ...
as the
Secretary of Energy The United States secretary of energy is the head of the United States Department of Energy, a member of the Cabinet of the United States, and fifteenth in the presidential line of succession. The position was created on October 1, 1977, when Pr ...
, there was pressure from the top to cancel the IFR. Sen.
John Kerry John Forbes Kerry (born December 11, 1943) is an American attorney, politician and diplomat who currently serves as the first United States special presidential envoy for climate. A member of the Forbes family and the Democratic Party, he ...
(D-MA) and O'Leary led the opposition to the reactor, arguing that it would be a threat to non-proliferation efforts, and that it was a continuation of the
Clinch River Breeder Reactor Project The Clinch River Nuclear Site (CRNS) is a project site owned by the Tennessee Valley Authority (TVA). It was once proposed as the Clinch River Breeder Reactor Project of the U.S. Atomic Energy Commission (and a successor agency, the U.S. Energy R ...
that had been canceled by Congress. Simultaneously, in 1994 Energy Secretary O'Leary awarded the lead IFR scientist with $10,000 and a gold medal, with the citation stating his work to develop IFR technology provided "improved safety, more efficient use of fuel and less radioactive waste." IFR opponents also presented a report by the DOE's Office of Nuclear Safety regarding a former Argonne employee's allegations that Argonne had retaliated against him for raising concerns about safety, as well as about the quality of research done on the IFR program. The report received international attention, with a notable difference in the coverage it received from major scientific publications. The British journal ''Nature'' entitled its article "Report backs whistleblower", and also noted conflicts of interest on the part of a DOE panel that assessed IFR research. In contrast, the article that appeared in ''Science'' was entitled "Was Argonne Whistleblower Really Blowing Smoke?". Despite support for the reactor by then-Rep. Richard Durbin (D-IL) and U.S. Senators
Carol Moseley Braun Carol Elizabeth Moseley Braun, also sometimes Moseley-Braun (born August 16, 1947), is a former U.S. Senator, an American diplomat, politician, and lawyer who represented Illinois in the United States Senate from 1993 to 1999. Prior to her Senate ...
(D-IL) and Paul Simon (D-IL), funding for the reactor was slashed, and it was ultimately canceled in 1994, at greater cost than finishing it. When this was brought to President Clinton's attention, he said "I know; it's a symbol."


Since 2000

In 2001, as part of the Generation IV roadmap, the DOE tasked a 242-person team of scientists from DOE, UC Berkeley, MIT, Stanford, ANL, LLNL, Toshiba, Westinghouse, Duke, EPRI, and other institutions to evaluate 19 of the best reactor designs on 27 different criteria. The IFR ranked #1 in their study which was released April 9, 2002.Generation IV roadmap. Evaluation Summaries. 2002
18 slides – some illegible
At present there are no Integral Fast Reactors in commercial operation. However, the
BN-800 reactor The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical po ...
, a very similar fast reactor operated as a burner of plutonium stockpiles, became commercially operational in 2014.


Technical Overview

The IFR is cooled by liquid
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and fueled by an
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
of
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
and
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
. The fuel is contained in steel cladding with liquid sodium filling in the space between the fuel and the cladding. A void above the fuel allows
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
and radioactive
xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
to be collected safely without significantly increasing pressure inside the fuel element, and also allows the fuel to expand without breaching the cladding, making metal rather than oxide fuel practical.The advantages of liquid sodium coolant, as opposed to liquid metal lead, are that liquid sodium is far less dense and far less viscous(reduced pumping costs), is not corrosive(via dissolution) to common steels, and creates essentially no radioactive neutron activation byproducts. The disadvantages of sodium coolant, as opposed to lead coolant is that sodium is chemically reactive, especially with water or air (both typically found in abundance in reactors). Lead may be substituted for the eutectic alloy of lead and bismuth as used for coolant in Soviet
Alfa-class submarine The Alfa class, Soviet designation Project 705 Lira (russian: Лира, meaning "Lyre", NATO reporting name Alfa), was a class of nuclear-powered attack submarines in service with the Soviet Navy from 1971 into the early 1990s, with one serving ...
s' reactors.


Basic design decisions


Metallic fuel

Metal fuel with a sodium-filled void inside the cladding to allow fuel expansion has been demonstrated in EBR-II. Metallic fuel makes
pyroprocessing Pyroprocessing (from Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as ore-ro ...
the reprocessing technology of choice. Fabrication of metallic fuel is easier and cheaper than ceramic (oxide) fuel, especially under remote handling conditions. Metallic fuel has better heat conductivity and lower heat capacity than oxide, which has safety advantages.


Sodium coolant

Use of liquid metal coolant removes the need for a pressure vessel around the reactor. Sodium has excellent nuclear characteristics, a high heat capacity and heat transfer capacity, low density, low viscosity, a reasonably low melting point and a high boiling point, and excellent compatibility with other materials including structural materials and fuel. The high heat capacity of the coolant and the elimination of water from the core increase the inherent safety of the core.


Pool design rather than loop

Containing all of the primary coolant in a pool produces several safety and reliability advantages.


Onsite reprocessing using pyroprocessing

Reprocessing is essential to achieve most of the benefits of a fast reactor, improving fuel usage and reducing radioactive waste each by several orders of magnitude. Onsite processing is what makes the IFR ''integral''. This and the use of pyroprocessing both reduce proliferation risk.
Pyroprocessing Pyroprocessing (from Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as ore-ro ...
(using an electrorefiner) has been demonstrated at EBR-II as practical on the scale required. Compared to the
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the ''de facto'' standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium ...
aqueous process, it is economical in capital cost, and is unsuitable for production of weapons material, again unlike PUREX which was developed for weapons programs. Pyroprocessing makes metallic fuel the fuel of choice. The two decisions are complementary.


Summary

The four basic decisions of metallic fuel, sodium coolant, pool design, and onsite reprocessing by electrorefining, are complementary, and produce a fuel cycle that is proliferation resistant and efficient in fuel usage, and a reactor with a high level of inherent safety, while minimizing the production of high-level waste. The practicality of these decisions has been demonstrated over many years of operation of EBR-II.''Plentiful Energy'', Charles Till and Yoon Il Chang, , p.114


Advantages

Breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. Breeder reactors achieve this because their neutron economy is high enough to create more fissile fuel than they use, by irradiation of a fertile mate ...
s (such as the IFR) could in principle extract almost all of the energy contained in
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
or
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
, decreasing fuel requirements by nearly two orders of magnitude compared to traditional once-through reactors, which extract less than 0.65% of the energy in mined uranium, and less than 5% of the enriched uranium with which they are fueled. This could greatly dampen concern about fuel supply or energy used in
mining Mining is the extraction of valuable minerals or other geological materials from the Earth, usually from an ore body, lode, vein, seam, reef, or placer deposit. The exploitation of these deposits for raw material is based on the economic ...
. What is more important today is ''why'' fast reactors are fuel-efficient: because fast neutrons can fission or "burn out" all the
transuranic waste Transuranic waste (TRU) is stated by U.S. regulations, and independent of state or origin, to be waste which has been contaminated with alpha emitting transuranic radionuclides possessing half-lives greater than 20 years and in concentrations g ...
(TRU) waste components (
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
:
reactor-grade plutonium Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes der ...
and
minor actinides The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkeliu ...
) many of which last tens of thousands of years or longer and make conventional nuclear waste disposal so problematic. Most of the radioactive fission products (FPs) the reactor produces have much shorter half-lives: they are intensely radioactive in the short term but decay quickly. The IFR extracts and recycles 99.9% of the uranium and
Transuranium element The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements. ...
s on each cycle and uses them to produce power; so its waste is just the fission products; in 300 years their radioactivity will fall below that of the original uranium ore.Nucleus-4-2007
pg 15 see SV/g chart, ''www.stralsakerhetsmyndigheten.se''
The fact that 4th generation reactors are being designed to use the waste from 3rd generation plants could change the nuclear story fundamentally—potentially making the combination of 3rd and 4th generation plants a more attractive energy option than 3rd generation by itself would have been, both from the perspective of waste management and energy security. "Integral" refers to on-site reprocessing by electrochemical
pyroprocessing Pyroprocessing (from Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as ore-ro ...
. This separates spent fuel into 3 fractions: 1. Uranium, 2. Plutonium isotopes and other
Transuranium element The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements. ...
s, and 3.
Nuclear fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s. The uranium and transuranium elements are recycled into new fuel rods, and the fission products are eventually converted to glass and metal blocks for safer disposal. Because fractions 2 and 3 (the combined transuranium elements and the fission products) are highly radioactive, fuel-rod transfer and reprocessing operations use robotic or remote-controlled equipment. This is also claimed to be a feature; not a bug; since fissile material that never leaves the facility (and would be fatal to handle if it did) greatly reduces the proliferation potential of possible diversion of fissile material.


Safety

In traditional
light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
s (LWRs) the core must be maintained at a high pressure to keep the water liquid at high temperatures. In contrast, since the IFR is a
liquid metal cooled reactor A liquid metal cooled nuclear reactor, liquid metal fast reactor or LMFR is an advanced type of nuclear reactor where the primary coolant is a liquid metal. Liquid metal cooled reactors were first adapted for nuclear submarine use and have been ...
, the core could operate at close to ambient pressure, dramatically reducing the danger of a
loss-of-coolant accident A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically t ...
. The entire reactor core,
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct conta ...
s and primary cooling pumps are immersed in a pool of liquid sodium or lead, making a loss of primary coolant extremely unlikely. The coolant loops are designed to allow for cooling through natural
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the conve ...
, meaning that in the case of a power loss or unexpected reactor shutdown, the heat from the reactor core would be sufficient to keep the coolant circulating even if the primary cooling pumps were to fail. The IFR also has
passive safety Automotive safety is the study and practice of design, construction, equipment and regulation to minimize the occurrence and consequences of traffic collisions involving motor vehicles. Road traffic safety more broadly includes roadway design ...
advantages as compared with conventional LWRs. The fuel and
cladding Cladding is an outer layer of material covering another. It may refer to the following: *Cladding (boiler), the layer of insulation and outer wrapping around a boiler shell *Cladding (construction), materials applied to the exterior of buildings ...
are designed such that when they expand due to increased temperatures, more neutrons would be able to escape the core, thus reducing the rate of the fission chain reaction. In other words, an increase in the core temperature will act as a feedback mechanism that decreases the core power. This attribute is known as a negative
temperature coefficient of reactivity Fuel temperature coefficient of reactivity is the change in reactivity of the nuclear fuel per degree change in the fuel temperature. The coefficient quantifies the amount of neutrons that the nuclear fuel (such as uranium-238) absorbs from the fi ...
. Most LWRs also have negative reactivity coefficients; however, in an IFR, this effect is strong enough to stop the reactor from reaching core damage without external action from operators or safety systems. This was demonstrated in a series of safety tests on the prototype. Pete Planchon, the engineer who conducted the tests for an international audience quipped "Back in 1986, we actually gave a small 0 MWeprototype advanced fast reactor a couple of chances to melt down. It politely refused both times." Liquid sodium presents safety problems because it ignites spontaneously on contact with air and can cause explosions on contact with water. This was the case at the
Monju Nuclear Power Plant was a Japanese sodium-cooled fast reactor, located near the Tsuruga Nuclear Power Plant, Fukui Prefecture. Its name is a reference to Manjusri. Construction started in 1986 and the reactor achieved criticality for the first time in April 1994. ...
in a 1995 accident and fire. To reduce the risk of explosions following a leak of water from the steam turbines, the IFR design (as with other sodium-cooled fast reactors) includes an intermediate liquid-metal coolant loop between the reactor and the steam turbines. The purpose of this loop is to ensure that any explosion following accidental mixing of sodium and turbine water would be limited to the secondary heat exchanger and not pose a risk to the reactor itself. Alternative designs use lead instead of sodium as the primary coolant. The disadvantages of lead are its higher density and viscosity, which increases pumping costs, and radioactive activation products resulting from neutron absorption. A lead-bismuth eutectate, as used in some Russian submarine reactors, has lower viscosity and density, but the same activation product problems can occur.


Efficiency and fuel cycle

The goals of the IFR project were to increase the efficiency of uranium usage by
breeding Breeding is sexual reproduction that produces offspring, usually animals or plants. It can only occur between a male and a female animal or plant. Breeding may refer to: * Animal husbandry, through selected specimens such as dogs, horses, and ra ...
plutonium and eliminating the need for
transuranic The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements. ...
isotopes ever to leave the site. The reactor was an unmoderated design running on
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s, designed to allow any transuranic isotope to be consumed (and in some cases used as fuel). Compared to current light-water reactors with a once-through fuel cycle that induces fission (and derives energy) from less than 1% of the uranium found in nature, a breeder reactor like the IFR has a very efficient (99.5% of uranium undergoes fission) fuel cycle. The basic scheme used pyroelectric separation, a common method in other metallurgical processes, to remove transuranics and actinides from the wastes and concentrate them. These concentrated fuels were then reformed, on site, into new fuel elements. The available fuel metals were never separated from the plutonium isotopes nor from all the fission products, and therefore relatively difficult to use in nuclear weapons. Also, plutonium never had to leave the site, and thus was far less open to unauthorized diversion. Another important benefit of removing the long
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
transuranics from the waste cycle is that the remaining waste becomes a much shorter-term hazard. After the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s (
reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
,
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, and
minor actinides The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkeliu ...
) are recycled, the remaining
radioactive waste Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapons r ...
isotopes are fission products, with
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 90 years ( Sm-151) or less, or 211,100 years (
Tc-99 Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, produ ...
) and more; plus any
activation product Activation products are materials made radioactive by neutron activation. Fission products and actinides produced by neutron absorption of nuclear fuel itself are normally referred to by those specific names, and ''activation product'' reserved ...
s from the non-fuel reactor components.


Comparisons to light-water reactors


Nuclear waste

IFR-style reactors could produce much less waste than LWR reactors, and could even utilize other waste as fuel. The primary argument for pursuing IFR-style technology today is that it provides the best solution to the existing nuclear waste problem because fast reactors can be fueled from the waste products of existing reactors as well as from the plutonium used in weapons, as is the case in the operating, as of 2014,
BN-800 reactor The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical po ...
. Depleted uranium (DU) waste can also be used as fuel in fast reactors. The waste products of IFR reactors either have a short half-life, which means that they decay quickly and become relatively safe, or a long halflife, which means that they are only slightly radioactive. Due to pyroprocessing the total volume of true waste/ fission products is 1/20th the volume of spent fuel produced by a light water plant of the same power output, and is often all considered to be waste. 70% of fission products are either stable or have half lives under one year. Technetium-99 and iodine-129, which constitute 6% of fission products, have very long half lives but can be transmuted to isotopes with very short half lives (15.46 seconds and 12.36 hours) by neutron absorption within a reactor, effectively destroying them (see more
Long-lived fission products Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity it is necessary to isolate them from man ...
). Zirconium-93, another 5% of fission products, could in principle be recycled into fuel-pin cladding, where it does not matter that it is radioactive. Excluding the contribution from
Transuranic waste Transuranic waste (TRU) is stated by U.S. regulations, and independent of state or origin, to be waste which has been contaminated with alpha emitting transuranic radionuclides possessing half-lives greater than 20 years and in concentrations g ...
(TRU) – which are isotopes produced when U-238 captures a slow
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wi ...
in a LWR but does not fission, all the remaining
high level waste High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms: * First and second cycle raffinate and other waste streams created by nuclear reprocessing. * Waste formed by vit ...
/fission products("FP") left over from reprocessing out the TRU fuel, is less radiotoxic(in
Sievert The sievert (symbol: SvNot be confused with the sverdrup or the svedberg, two non-SI units that sometimes use the same symbol.) is a unit in the International System of Units (SI) intended to represent the stochastic health risk of ionizing rad ...
s) than natural uranium(in a gram to gram comparison) within 400 years, and it continues its decline following this. Edwin Sayre has estimated that a ton of fission products(which also include the very weakly radioactive Palladium-107 etc.) reduced to metal, has a market value of $16 million. The two forms of IFR waste produced, contain no plutonium or other
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
. The radioactivity of the waste decays to levels similar to the original ore in about 300–400 years. The on-site reprocessing of fuel means that the volume of high level nuclear waste leaving the plant is tiny compared to LWR spent fuel.Estimates from Argonne National Laboratory place the output of waste of a 1000 
MWe The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Watt ...
plant operating at 70% capacity at 1700 pounds/year.
In fact, in the U.S. most spent LWR fuel has remained in storage at the reactor site instead of being transported for reprocessing or placement in a
geological repository A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment (typically 200–1000 m deep). It entails a combination of waste form, waste package, engineered seals and geology that is suited ...
. The smaller volumes of
high level waste High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms: * First and second cycle raffinate and other waste streams created by nuclear reprocessing. * Waste formed by vit ...
from reprocessing could stay at reactor sites for some time, but are intensely radioactive from
medium-lived fission products Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity it is necessary to isolate them from man ...
(MLFPs) and need to be stored securely, like in the present
Dry cask storage Dry cask storage is a method of storing high-level radioactive waste, such as spent nuclear fuel that has already been cooled in the spent fuel pool for at least one year and often as much as ten years. Casks are typically steel cylinders that ar ...
vessels. In its first few decades of use, before the MLFP's decay to lower heat producing levels,
geological repository A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment (typically 200–1000 m deep). It entails a combination of waste form, waste package, engineered seals and geology that is suited ...
capacity is constrained not by volume but by heat generation, and
decay heat Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occur ...
generation from
medium-lived fission products Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity it is necessary to isolate them from man ...
is about the same per unit power from any kind of fission reactor, limiting early repository emplacement. The potential complete removal of plutonium from the waste stream of the reactor reduces the concern that presently exists with spent nuclear fuel from most other reactors that arises with burying or storing their spent fuel in a geological repository, as they could possibly be used as a plutonium mine at some future date. "Despite the million-fold reduction in radiotoxicity offered by this scheme, some believe that actinide removal would offer few if any significant advantages for disposal in a geologic repository because some of the fission product nuclides of greatest concern in scenarios such as
groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated ...
leaching Leaching is the loss or extraction of certain materials from a carrier into a liquid (usually, but not always a solvent). and may refer to: * Leaching (agriculture), the loss of water-soluble plant nutrients from the soil; or applying a small amou ...
actually have longer half-lives than the radioactive actinides. These concerns do not consider the plan to store such materials in insoluble Synroc, and do not measure hazards in proportion to those from natural sources such as medical x-rays, cosmic rays, or natural radioactive rocks (such as
granite Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies under ...
). These persons are concerned with radioactive fission products such as
technetium-99 Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, produci ...
,
iodine-129 Iodine-129 (129I) is a long-lived radioisotope of iodine which occurs naturally, but also is of special interest in the monitoring and effects of man-made nuclear fission products, where it serves as both tracer and potential radiological contamin ...
, and
cesium-135 Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury (element), mercury, one of the elements with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longe ...
with half-lives between 213,000 and 15.7 million years" Technical options for the advanced liquid metal reactor, , page 30 Some of which are being targeted for transmutation to belay even these comparatively low concerns, for example the IFR's positive void coefficient could be reduced to an acceptable level by adding technetium to the core, helping destroy the long-lived fission product
technetium-99 Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, produci ...
by nuclear transmutation in the process.Reduction of the Sodium-Void Coefficient of Reactivity by Using a Technetium Layer
page 2
(see more
Long-lived fission products Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity it is necessary to isolate them from man ...
)


Efficiency

IFRs use virtually all of the energy content in the uranium fuel whereas a traditional light water reactor uses less than 0.65% of the energy in mined uranium, and less than 5% of the energy in enriched uranium.


Carbon dioxide

Both IFRs and LWRs do not emit CO2 during operation, although construction and fuel processing result in CO2 emissions, if energy sources which are not carbon neutral (such as fossil fuels), or CO2 emitting cements are used during the construction process. A 2012
Yale University Yale University is a Private university, private research university in New Haven, Connecticut. Established in 1701 as the Collegiate School, it is the List of Colonial Colleges, third-oldest institution of higher education in the United Sta ...
review published in the Journal of Industrial Ecology analyzing
life cycle assessment Life cycle assessment or LCA (also known as life cycle analysis) is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case o ...
emissions from
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced ...
determined that:Warner, Ethan S.; Heath, Garvin A
Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization
''Journal of Industrial Ecology'',
Yale University Yale University is a Private university, private research university in New Haven, Connecticut. Established in 1701 as the Collegiate School, it is the List of Colonial Colleges, third-oldest institution of higher education in the United Sta ...
, published online April 17, 2012,
Although the paper primarily dealt with data from
Generation II reactor A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them. ...
s, and did not analyze the emissions by 2050 of the presently under construction Generation III reactors, it did summarize the Life Cycle Assessment findings of in development reactor technologies.


Fuel cycle

Fast reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
fuel must be at least 20% fissile, greater than the
low enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
used in LWRs. The
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
material could initially include
highly enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
or
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, from LWR
spent fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor a ...
, decommissioned
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s, or other sources. During operation, the reactor breeds more fissile material from
fertile material Fertile material is a material that, although not itself fissionable by thermal neutrons, can be converted into a fissile material by neutron absorption and subsequent nuclei conversions. Naturally occurring fertile materials Naturally occurring ...
, at most about 5% more from uranium, and 1% more from thorium. The fertile material in fast reactor fuel can be depleted uranium (mostly U-238), natural uranium,
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
, or
reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
from
spent fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor a ...
from traditional light water reactors, and even include nonfissile
isotopes of plutonium Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long ...
and
minor actinide The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkeliu ...
isotopes. Assuming no leakage of actinides to the waste stream during reprocessing, a 1GWe IFR-style reactor would consume about 1 ton of fertile material per year and produce about 1 ton of fission products. The IFR fuel cycle's reprocessing by
pyroprocessing Pyroprocessing (from Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as ore-ro ...
(in this case,
electrorefining Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a ...
) does not need to produce pure plutonium free of fission product radioactivity as the
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the ''de facto'' standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium ...
process is designed to do. The purpose of reprocessing in the IFR fuel cycle is simply to reduce the level of those fission products that are
neutron poison In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
s; even those need not be completely removed. The electrorefined spent fuel is highly radioactive, but because new fuel need not be precisely fabricated like LWR fuel pellets but can simply be cast, remote fabrication can be used, reducing exposure to workers. Like any fast reactor, by changing the material used in the blankets, the IFR can be operated over a spectrum from breeder to self-sufficient to burner. In breeder mode (using U-238 blankets) it will produce more fissile material than it consumes. This is useful for providing fissile material for starting up other plants. Using steel reflectors instead of U-238 blankets, the reactor operates in pure burner mode and is not a net creator of fissile material; on balance it will consume fissile and fertile material and, assuming loss-free reprocessing, output no
actinides The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
but only fission products and
activation products Activation products are materials made radioactive by neutron activation. Fission products and actinides produced by neutron absorption of nuclear fuel itself are normally referred to by those specific names, and ''activation product'' reserved fo ...
. Amount of fissile material needed could be a limiting factor to very widespread deployment of fast reactors, if stocks of surplus weapons plutonium and LWR spent fuel plutonium are not sufficient. To maximize the rate at which fast reactors can be deployed, they can be operated in maximum breeding mode. Because the current cost of
enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
is low compared to the expected cost of large-scale pyroprocessing and electrorefining equipment and the cost of building a secondary coolant loop, the higher fuel costs of a
thermal reactor A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and struct ...
over the expected operating lifetime of the plant are offset by increased
capital cost Capital costs are fixed, one-time expenses incurred on the purchase of land, buildings, construction, and equipment used in the production of goods or in the rendering of services. In other words, it is the total cost needed to bring a projec ...
. (Currently in the United States, utilities pay a flat rate of 1/10 of a cent per kilowatt hour to the Government for disposal of high level radioactive waste by law under the
Nuclear Waste Policy Act The Nuclear Waste Policy Act of 1982 is a United States federal law which established a comprehensive national program for the safe, permanent disposal of highly radioactive wastes. * The US Congress amended the act in 1987 to designate Yucca Mou ...
. If this charge were based on the longevity of the waste, closed fuel cycles might become more financially competitive. As the planned geological repository in the form of
Yucca Mountain Yucca Mountain is a mountain in Nevada, near its border with California, approximately northwest of Las Vegas. Located in the Great Basin, Yucca Mountain is east of the Amargosa Desert, south of the Nevada Test and Training Range and in the ...
is not going ahead, this fund has collected over the years and presently $25 billion has piled up on the Government's doorstep for something they have not delivered, that is, reducing the hazard posed by the waste. Reprocessing nuclear fuel using pyroprocessing and electrorefining has not yet been demonstrated on a commercial scale, so investing in a large IFR-style plant may be a higher financial risk than a conventional
light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
.


Passive safety

The IFR uses metal alloy fuel (uranium/plutonium/zirconium) which is a good conductor of heat, unlike the LWR's (and even some fast breeder reactors')
uranium oxide Uranium oxide is an oxide of the element uranium. The metal uranium forms several oxides: * Uranium dioxide or uranium(IV) oxide (UO2, the mineral uraninite or pitchblende) * Diuranium pentoxide or uranium(V) oxide (U2O5) * Uranium trioxide o ...
which is a poor conductor of heat and reaches high temperatures at the center of fuel pellets. The IFR also has a smaller volume of fuel, since the fissile material is diluted with fertile material by a ratio of 5 or less, compared to about 30 for LWR fuel. The IFR core requires more heat removal per core volume during operation than the LWR core; but on the other hand, after a shutdown, there is far less trapped heat that is still diffusing out and needs to be removed. However,
decay heat Decay heat is the heat released as a result of radioactive decay. This heat is produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. Decay heat occur ...
generation from short-lived fission products and actinides is comparable in both cases, starting at a high level and decreasing with time elapsed after shutdown. The high volume of liquid sodium primary coolant in the pool configuration is designed to absorb decay heat without reaching fuel melting temperature. The primary sodium pumps are designed with flywheels so they will coast down slowly (90 seconds) if power is removed. This coast-down further aids core cooling upon shutdown. If the primary cooling loop were to be somehow suddenly stopped, or if the control rods were suddenly removed, the metal fuel can melt as accidentally demonstrated in EBR-I, however the melting fuel is then extruded up the steel fuel cladding tubes and out of the active core region leading to permanent reactor shutdown and no further fission heat generation or fuel melting. With metal fuel, the cladding is not breached and no radioactivity is released even in extreme overpower transients. Self-regulation of the IFR's power level depends mainly on thermal expansion of the fuel which allows more neutrons to escape, damping the
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
. LWRs have less effect from thermal expansion of fuel (since much of the core is the neutron moderator) but have strong negative feedback from
Doppler broadening In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules. Different velocities of the emitting (or absorbing) particles result in different Dop ...
(which acts on thermal and epithermal neutrons, not fast neutrons) and negative
void coefficient In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
from boiling of the water moderator/coolant; the less dense steam returns fewer and less-thermalized neutrons to the fuel, which are more likely to be captured by U-238 than induce fissions. However, the IFR's positive void coefficient could be reduced to an acceptable level by adding technetium to the core, helping destroy the long-lived fission product
technetium-99 Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, produci ...
by nuclear transmutation in the process. IFRs are able to withstand both a ''loss of flow without
SCRAM A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
'' and ''loss of heat sink without SCRAM''. In addition to passive shutdown of the reactor, the convection current generated in the primary coolant system will prevent fuel damage (core meltdown). These capabilities were demonstrated in the
EBR-II Experimental Breeder Reactor-II (EBR-II) is a sodium-cooled fast reactor designed, built and operated by Argonne National Laboratory at the National Reactor Testing Station in Idaho.
. The ultimate goal is that no radioactivity will be released under any circumstance. The flammability of sodium is a risk to operators. Sodium burns easily in air, and will ignite spontaneously on contact with water. The use of an intermediate coolant loop between the reactor and the turbines minimizes the risk of a sodium fire in the reactor core. Under neutron bombardment, sodium-24 is produced. This is highly radioactive, emitting an energetic
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
of 2.7
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
followed by a beta decay to form magnesium-24. Half-life is only 15 hours, so this isotope is not a long-term hazard. Nevertheless, the presence of sodium-24 further necessitates the use of the intermediate coolant loop between the reactor and the turbines.


Proliferation

IFRs and
Light water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
s (LWRs) both produce reactor grade plutonium, and even at high
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per ini ...
s remains weapons usable, but the IFR fuel cycle has some design features that would make proliferation more difficult than the current
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the ''de facto'' standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium ...
recycling of spent LWR fuel. For one thing, it may operate at higher
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per ini ...
s and therefore increase the relative abundance of the non-fissile, but fertile, isotopes
Plutonium-238 Plutonium-238 (238Pu or Pu-238) is a fissile, radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suita ...
,
Plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
and
Plutonium-242 Plutonium-242 (242Pu or Pu-242) is one of the isotopes of plutonium, the second longest-lived, with a half-life of 375,000 years. The half-life of 242Pu is about 15 times that of 239Pu; so it is one-fifteenth as radioactive, and not one of the la ...
. Unlike PUREX reprocessing, the IFR's electrolytic reprocessing of
spent fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor a ...
did not separate out pure plutonium, and left it mixed with minor actinides and some rare earth fission products which make the theoretical ability to make a bomb directly out of it considerably dubious. Rather than being transported from a large centralized reprocessing plant to reactors at other locations, as is common now in France, from
La Hague La Hague () is a commune in the department of Manche, northwestern France. The municipality was established on 1 January 2017 by merger of the former communes of Beaumont-Hague (the seat), Acqueville, Auderville, Biville, Branville-Hague, ...
to its dispersed nuclear fleet of LWRs, the IFR pyroprocessed fuel would be much more resistant to unauthorized diversion. The material with the mix of plutonium isotopes in an IFR would stay at the reactor site and then be burnt up practically in-situ, alternatively, if operated as a breeder reactor, some of the pyroprocessed fuel could be consumed by the same or other reactors located elsewhere. However, as is the case with conventional aqueous reprocessing, it would remain possible to chemically extract all the plutonium isotopes from the pyroprocessed/recycled fuel and would be much easier to do so from the recycled product than from the original spent fuel, although compared to other conventional recycled nuclear fuel,
MOX Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an al ...
, it would be more difficult, as the IFR recycled fuel contains more fission products than MOX and due to its higher
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per ini ...
, more proliferation resistant
Pu-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
than MOX. An advantage of the IFRs actinides removal and burn up (actinides include plutonium) from its spent fuel, is to eliminate concerns about leaving the IFRs spent fuel or indeed conventional, and therefore comparatively lower
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per ini ...
, spent fuel – which can contain weapons usable plutonium isotope concentrations in a
geological repository A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment (typically 200–1000 m deep). It entails a combination of waste form, waste package, engineered seals and geology that is suited ...
(or the more common
dry cask storage Dry cask storage is a method of storing high-level radioactive waste, such as spent nuclear fuel that has already been cooled in the spent fuel pool for at least one year and often as much as ten years. Casks are typically steel cylinders that ar ...
) which then might be mined sometime in the future for the purpose of making weapons." Because
reactor-grade plutonium Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes der ...
contains
isotopes of plutonium Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long ...
with high spontaneous fission rates, and the ratios of these troublesome isotopes-from a weapons manufacturing point of view, only increases as the fuel is burnt up for longer and longer, it is considerably more difficult to produce fission nuclear weapons which will achieve a substantial yield from higher-
burnup In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per ini ...
spent fuel than from conventional, moderately burnt up, LWR
spent fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor a ...
. Therefore, proliferation risks are considerably reduced with the IFR system by many metrics, but not entirely eliminated. The plutonium from ALMR recycled fuel would have an isotopic composition similar to that obtained from other high burnt up
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
sources. Although this makes the material less attractive for weapons production, it could be used in weapons at varying degrees of sophistication/with fusion boosting. The U.S. government detonated a nuclear device in 1962 using then defined "
reactor-grade plutonium Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes der ...
", although in more recent categorizations it would instead be considered as fuel-grade plutonium, typical of that produced by low burn up
magnox reactor Magnox is a type of nuclear reactor, nuclear power/production reactor that was designed to run on natural uranium with graphite-moderated reactor, graphite as the moderator and carbon dioxide gas as the heat exchanger, heat exchange coolant. It ...
s. Plutonium produced in the fuel of a breeder reactor generally has a higher fraction of the isotope
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
, than that produced in other reactors, making it less attractive for weapons use, particularly in first generation
nuclear weapon design Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types: * pure fission weapons, the simplest and least technically ...
s similar to
Fat Man "Fat Man" (also known as Mark III) is the codename for the type of nuclear bomb the United States detonated over the Japanese city of Nagasaki on 9 August 1945. It was the second of the only two nuclear weapons ever used in warfare, the fir ...
. This offers an intrinsic degree of proliferation resistance, but the plutonium made in the blanket of uranium surrounding the core, if such a blanket is used, is usually of a high Pu-239 quality, containing very little Pu-240, making it highly attractive for weapons use. "Although some recent proposals for the future of the ALMR/IFR concept have focused more on its ability to transform and irreversibly use up plutonium, such as the conceptual
PRISM (reactor) PRISM (Power Reactor Innovative Small Module, sometimes S-PRISM from SuperPRISM) is a nuclear power plant design by GE Hitachi Nuclear Energy (GEH). Design The S-PRISM represents GEH's Generation IV reactor solution to closing the nuclear fu ...
and the in operation(2014)
BN-800 reactor The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical po ...
in Russia, the developers of the IFR acknowledge that it is 'uncontested that the IFR can be configured as a net producer of plutonium'." As mentioned above, if operated not as a burner, but as a breeder, the IFR has a clear proliferation potential "if instead of processing spent fuel, the ALMR system were used to reprocess ''irradiated fertile (breeding) material'' (that is if a blanket of breeding U-238 was used), the resulting plutonium would be a superior material, with a nearly ideal isotope composition for nuclear weapons manufacture."


Reactor design and construction

A commercial version of the IFR,
S-PRISM PRISM (Power Reactor Innovative Small Module, sometimes S-PRISM from SuperPRISM) is a nuclear power plant design by GE Hitachi Nuclear Energy (GEH). Design The S-PRISM represents GEH's Generation IV reactor solution to closing the nuclear fu ...
, can be built in a factory and transported to the site. This small modular design (311 MWe modules) reduces costs and allows nuclear plants of various sizes (311 MWe and any integer multiple) to be economically constructed. Cost assessments taking account of the complete life cycle show that fast reactors could be no more expensive than the most widely used reactors in the world – water-moderated water-cooled reactors.


Liquid metal Na coolant

Unlike reactors that use relatively slow low energy (thermal) neutrons,
fast-neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV or greater, on average), as oppose ...
s need
nuclear reactor coolant A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary co ...
that does not moderate or block neutrons (like water does in an LWR) so that they have sufficient energy to fission
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
isotopes that are
fissionable In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typi ...
but not
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
. The core must also be compact and contain the least amount of neutron moderating material as possible. Metal sodium (Na) coolant in many ways has the most attractive combination of properties for this purpose. In addition to not being a neutron moderator, desirable physical characteristics include: * Low melting temperature * Low vapor pressure * High boiling temperature * Excellent thermal conductivity * Low viscosity * Light weight * Thermal and radiation stability Other benefits: Abundant and low cost material. Cleaning with chlorine produces non-toxic table salt. Compatible with other materials used in the core (does not react or dissolve stainless steel) so no special corrosion protection measures needed. Low pumping power (from light weight and low viscosity). Maintains an oxygen (and water) free environment by reacting with trace amounts to make sodium oxide or sodium hydroxide and hydrogen, thereby protecting other components from corrosion. Light weight (low density) improves resistance to seismic inertia events (earthquakes.) Drawbacks: Extreme fire hazard with any significant amounts of air (oxygen) and spontaneous combustion with water, rendering sodium leaks and flooding dangerous. This was the case at the
Monju Nuclear Power Plant was a Japanese sodium-cooled fast reactor, located near the Tsuruga Nuclear Power Plant, Fukui Prefecture. Its name is a reference to Manjusri. Construction started in 1986 and the reactor achieved criticality for the first time in April 1994. ...
in a 1995 accident and fire. Reactions with water produce hydrogen which can be explosive. Sodium activation product (isotope) 24Na releases dangerous energetic photons when it decays (however it has a very short half-life of 15 hours). Reactor design keeps 24Na in the reactor pool and carries away heat for power production using a secondary sodium loop, adding costs to construction and maintenance. Study released by UChicago Argonne


See also

*
Gas-cooled fast reactor The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium ...
*
Generation IV reactor Generation IV reactors (Gen IV) are six nuclear reactor designs recognized by the Generation IV International Forum. The designs target improved safety, sustainability, efficiency, and cost. The most developed Gen IV reactor design is the sodium ...
*
Lead-cooled fast reactor The lead-cooled fast reactor is a nuclear reactor design that features a fast neutron spectrum and molten lead or lead-bismuth eutectic coolant. Molten lead or lead-bismuth eutectic can be used as the primary coolant because especially lead, and ...
*
Molten salt reactor A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Only two MSRs have ever operated, both research reactors in the United States. The 1950's ...
*
Traveling wave reactor A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem with the burnup of fissile material. TWRs differ from other kinds of fast- ...


References


Further reading

* * * * * ''The Restoration of the Earth'', Theodore B. Taylor and Charles C. Humpstone, 166 pages, Harper & Row (1973) *''Sustainable energy – Without the Hot Air'', David J.C. MacKay, 384 pages, UIT Cambridge (2009) * '' 2081: A Hopeful View of the Human Future'', Gerard K. O'Neill, 284 pages, Simon & Schuster (1981) * ''The Second Nuclear Era: A New Start for Nuclear Power'', Alvin M. Weinberg et al., 460 pages, Praeger Publishers (1985) * ''Thorium Fuel Cycle – Potential Benefits and Challenges'', IAEA, 105 pages (2005) * ''The Nuclear Imperative: A Critical Look at the Approaching Energy Crisis (More Physics for Presidents)'', Jeff Eerkens, 212 pages, Springer (2010)


External links


The Integral Fast Reactor
at Argonne National Laboratory * Archived material from a site about the IFR formerly hosted by UC Berkeley: *
(archived) page index
*

*

*

*

*

*

*

*

* ttps://web.archive.org/web/20160125131513/http://www.nationalcenter.org/NPA378.html Integral Fast Reactors: Source of Safe, Abundant, Non-Polluting Powerby George S. Stanford, Ph.D.
Frontline interview with Dr. Till



Integral Fast Reactors by Tom Blees, part 2 of 3
Interview with author Tom Blees about IFR.
The IFR's role in global warming
{{Nuclear fission reactors Nuclear power reactor types Nuclear reactors Unfinished nuclear reactors