Industrial porcelain enamel
   HOME

TheInfoList



OR:

Industrial porcelain enamel (also known as glass lining, glass-lined steel, or glass fused to steel) is the use of
porcelain enamel Vitreous enamel, also called porcelain enamel, is a material made by fusing powdered glass to a substrate by firing, usually between . The powder melts, flows, and then hardens to a smooth, durable vitreous coating. The word comes from the Latin ...
(also known as vitreous enamel) for industrial, rather than artistic, applications. Porcelain enamel, a thin layer of
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
or
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
applied to a substrate of metal, is used to protect surfaces from chemical attack and physical damage, modify the structural characteristics of the substrate, and improve the appearance of the product. Enamel has been used for art and decoration since the period of Ancient Egypt, and for industry since the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
. It is most commonly used in the production of
cookware Cookware and bakeware is food preparation equipment, such as cooking pots, pans, baking sheets etc. used in kitchens. Cookware is used on a stove or range cooktop, while bakeware is used in an oven. Some utensils are considered both cookware ...
, home appliances, bathroom fixtures, water heaters, and scientific laboratory equipment.


Characteristics

The most important characteristic of porcelain enamel, from an industrial perspective, is its resistance to
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
. Mild steel is used in almost every industry and a huge array of products; porcelain enamel is a very economic way of protecting this, and other chemically vulnerable materials, from corrosion. It can also produce very smooth, glossy finishes in a wide array of colours; these colours will not fade on exposure to UV light, as paint will. Being a fired ceramic, porcelain enamel is also highly heat-resistant; this allows it to be used in high-temperature applications where an organic anti-corrosion coating or
galvanization Galvanization or galvanizing ( also spelled galvanisation or galvanising) is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are submerge ...
may be impractical or even dangerous (''see
Metal fume fever Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, galvo poisoning, metal dust fever, welding shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (Zn ...
''). Porcelain enamel also sees less frequent employment of some of its other properties; examples are its abrasion resistance, where it may perform better than many metals; its resistance to
organic solvents A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for p ...
, where it is entirely impervious; its resistance to
thermal shock Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different pa ...
, where it can resist rapid cooling from temperatures and higher; and its longevity.


Applications

Porcelain enamel is used most often in the manufacture of products that will be expected to come under regular chemical attack or high heat such as cookware, burners, and
laboratory equipment A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratory services are provided in a variety of settings: physicia ...
. It is used in the production of many household goods and appliances, especially those used in the
kitchen A kitchen is a room or part of a room used for cooking and food preparation in a dwelling or in a commercial establishment. A modern middle-class residential kitchen is typically equipped with a stove, a sink with hot and cold running wate ...
or
bathroom A bathroom or washroom is a room, typically in a home or other residential building, that contains either a bathtub or a shower (or both). The inclusion of a wash basin is common. In some parts of the world e.g. India, a toilet is typically ...
area: pots, pans, cooktops, appliances, sinks, toilets, bathtubs, even walls, counters, and other surfaces. Porcelain enamel is also used architecturally as a coating for wall panels. It may be used externally to provide
weather resistance Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
and desirable appearance, or internally to provide wear resistance; for example, on
escalator An escalator is a moving staircase which carries people between floors of a building or structure. It consists of a motor-driven chain of individually linked steps on a track which cycle on a pair of tracks which keep the step tread horizo ...
side panels and tunnel walls. In recent years, agricultural silos have also been constructed with porcelain enamelled steel plates to protect the interior from corrosion and the exterior from weathering; this may indicate a future trend of coating all outdoor mild steel products in a weather-resistant porcelain enamel.


Enamelling process

The application of industrial porcelain enamel can be a complicated process involving many different and very technical steps. All enamelling processes involve the mixture and preparation of frit, the unfired enamel mixture; the preparation of the substrate; the application and firing; and then finishing processes. Most modern applications also involve two layers of enamel: a ground-coat to bond to the substrate and a cover-coat to provide the desired external properties. Because frits frequently must be mixed at higher temperatures than the firing requires, most modern industrial enamellers do not mix their own frits completely; frit is most often purchased from dedicated frit producers in standard compositions and then any special ingredients added before application and firing.


Frit

For ground coats, the composition of a frit for any given application is determined primarily by the metal used as the substrate: different varieties of steel, and different metals such as
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, require different frit compositions to bond to them. For cover coats, the frit is composed to bind to the ground-coat and produce the desired external properties. Frit is normally prepared by mixing the ingredients and then milling the mixture into a powder. The ingredients, most often metal oxides and minerals such as
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
(or
silica sand Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand as the mold material. The term "sand casting" can also refer to an object produced via the sand casting process. Sand castings are produced i ...
),
soda ash Sodium carbonate, , (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield moderately alkaline solutions ...
,
borax Borax is a salt ( ionic compound), a hydrated borate of sodium, with chemical formula often written . It is a colorless crystalline solid, that dissolves in water to make a basic solution. It is commonly available in powder or granular for ...
, and
cobalt oxide Cobalt oxide is a family of chemical compounds consisting of cobalt and oxygen atoms. Compounds in the cobalt oxide family include: * Cobalt(II) oxide (cobaltous oxide), CoO *Cobalt(III) oxide Cobalt(III) oxide is the inorganic compound with the ...
, are acquired in particulate form; the precise chemical composition and amount of each ingredient must be carefully measured and regulated. Once prepared, this powdered frit is then slumped and stirred to promote even distribution of materials; most frits are smelted at temperatures between 1150 and . After smelting, the frit is again milled into a powder, most often by ball mill grinding. For wet application of enamel, a slurry of frit suspended in water must be created. To remain in suspension, frits must be milled to an extremely fine particle size, or mixed with a suspension agent such as
clay Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4). Clays develop plasticity when wet, due to a molecular film of water surrounding the clay par ...
or
electrolytes An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon di ...
.


Substrate

The metal to be used as a substrate is primarily determined by the application to which the product will be put, independent of any enamel considerations. Most commonly used are steels of various compositions, but also used are
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
. Before the application of enamel, the surface of the substrate must be prepared with a number of processes. The most important processes are the cleaning of the surface of the substrate; all remnants of chemicals, rusts, oils, and other contaminants must be completely removed. To facilitate this, frequent processes performed on substrates are
degreasing Degreasing, often called defatting or fat trimming, is the removal of fatty acids from an object. In culinary science, degreasing is done with the intention of reducing the fat content of a meal. Degreasing food Degreasing is often used by diete ...
,
pickling Pickling is the process of preserving or extending the shelf life of food by either anaerobic fermentation in brine or immersion in vinegar. The pickling procedure typically affects the food's texture and flavor. The resulting food is cal ...
(which can also etch the surface and provide anchoring points for the enamel), alkaline neutralization, and rinsing.


Application

Enamel may be applied to the substrate via many different methods. These methods are most often delineated into either wet or dry applications, determined by whether the enamel is applied as a dry powder or a liquid slurry suspension.


Dry application

The simplest method of dry application, especially for cast-iron substrates, is to heat the substrate and roll it in powdered frit. The frit particles melt on contact with the hot substrate and adhere to its surface. This method requires a high level of operator skill and concentration to achieve an even coating, and due to its inconstant nature is not often used in industrial applications. The most common method of dry application used in industry today is
electrostatic deposition Electrostatic spray-assisted vapour deposition (ESAVD) is a technique (developed by a company called IMPT) to deposit both thin and thick layers of a coating onto various substrates. In simple terms chemical precursors are sprayed across an electr ...
. Before application, the dry frit must be encapsulated in an organic
silane Silane is an inorganic compound with chemical formula, . It is a colourless, pyrophoric, toxic gas with a sharp, repulsive smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Sila ...
; this allows the frit to hold an electrical charge during application. An electrostatic gun fires the dry frit powder onto the electrically earthed metal substrate; electrical forces bind the charged powder to the substrate and it adheres.


Wet application

The simplest method of wet application is to dip the substrate in a bath of liquid slurry; complete immersion coats all available surfaces of the substrate. Dipping is not often used in industry, however, because many preliminary trial dippings are required before the thickness of the coat can be predicted reliably enough for the desired application. A form of dipping suitable for modern industrial application is flow coating. Rather than dip the product in a bath of slurry, slurry is flowed over the surface of the substrate to be coated. This method allows for much more economical use of slurry and time; it is capable of allowing very rapid production runs. Wet enamel may also be sprayed onto the product using specialized spray guns. Liquid slurry is fed into the nozzle of a spray gun, and compressed air atomizes the slurry and ejects it from the nozzle of the gun in a controlled jet.


Firing

Firing, where coated substrates are passed through a furnace to experience long periods of stable high temperatures, converts the adhering particles of frit into a continuous glass layer. The effectiveness of the process is highly dependent on the time, temperature, and the quality or thickness of the coating on the substrate. Most frits for industrial applications are fired for as low as 20 minutes, but frits for very heavy-duty industrial applications may take double this time. Porcelain enamel coatings on aluminium substrates may be fired at temperatures as low as 530°C, but most steel substrates require temperatures in excess of 800°C.


History

Porcelain enamel Vitreous enamel, also called porcelain enamel, is a material made by fusing powdered glass to a substrate by firing, usually between . The powder melts, flows, and then hardens to a smooth, durable vitreous coating. The word comes from the Latin ...
has been applied to jewelry metals such as
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
,
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
since antiquity for the purposes of decoration. It was not until the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
that
ferrous metals In chemistry, the adjective Ferrous indicates a compound that contains iron(II), meaning iron in its +2 oxidation state, possibly as the divalent cation Fe2+. It is opposed to "ferric" or iron(III), meaning iron in its +3 oxidation state, such a ...
first became the subject of porcelain enamelling processes; these first attempts were met with limited success. A reliably successful technique was not developed until the middle of the 19th century, with the development of a method for enamelling
cast-iron Cast iron is a class of iron–carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impuriti ...
cooking pots in
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwe ...
. It was not long before this method of enamelling became outdated with the development of new ferrous substrates, and most modern research into porcelain enamelling is concerned with creating an acceptable bond between enamels and new metal substrates. The production of porcelain enamelled products on an industrial scale first began in Germany in 1840. The method used was very primitive compared to modern methods: the product was heated to a very high temperature and dusted with enamel, then immediately fired. This frequently resulted in poor adhesion or a spotty coat; two coats were always required to achieve a continuous, corrosion-resistant surface. It could only be applied to cast- and
wrought-iron Wrought iron is an iron alloy with a very low carbon content (less than 0.08%) in contrast to that of cast iron (2.1% to 4%). It is a semi-fused mass of iron with fibrous slag inclusions (up to 2% by weight), which give it a wood-like "grain" t ...
, and only used for relatively simple products like pots and pans. The ability to apply porcelain enamel to sheet steels was not developed until 1900, with the discovery that making minor changes to the composition of the enamel, such as including
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
oxides as minor components, could drastically improve its adhesion ability to carbon steels. Concurrent with this development was the first use of wet-slurry enamel application; this allowed porcelain enamel to be applied to much more complex shapes by dipping the shape into the liquid enamel slurry. Up until the 1930s, all enamel applications required two coats of enamel: an undercoat to adhere to the substrate which was always blue (due in part to the presence of cobalt oxides), and a top coat of the desired colour (most often white). It was not until 1930 that the use of zero carbon steel (steel with less than 0.005% carbon content) as a substrate was linked to allowing lighter-colored enamels to adhere directly to the substrate.


References

Bibliography * * {{Glass science Coatings Glass applications Vitreous enamel Porcelain