Imazaquin
   HOME

TheInfoList



OR:

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.


Imidazolinone herbicides

Imazaquin along with imazamethabenz-methyl, imazapyr, imazapic, imazethapyr, and imazamox comprise the class of synthetic compounds termed the imidazolinone herbicides. These chemicals all feature an imidazolinone ring with a carboxylic acid group attached to the backbone. They vary in the attached ring structure. Imidazolinone herbicides kill plants by inhibiting
acetohydroxy acid synthase The acetolactate synthase (ALS) enzyme (also known as acetohydroxy acid or acetohydroxyacid synthase, abbr. AHAS) is a protein found in plants and micro-organisms. ALS catalyzes the first step in the synthesis of the branched-chain amino acids ( ...
(AHAS). AHAS is the first enzyme in the branched-chain amino acid pathway that leads to the synthesis of amino acids
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
, isoleucine, and
valine Valine (symbol Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- carboxylic acid group (which is in the deprotona ...
. Crop varieties have been developed through conventional breeding that are resistant to these herbicides and are marketed by
BASF BASF SE () is a German multinational chemical company and the largest chemical producer in the world. Its headquarters is located in Ludwigshafen, Germany. The BASF Group comprises subsidiaries and joint ventures in more than 80 countries ...
under the Clearfield brand.


History

The imidazolinone herbicides were first discovered in the 1970s. The first U.S. patent was awarded in 1980 for imazamethabenz-methyl. Imazaquin, imazapyr, imazapic, and imazethpyr followed suit and received patents in 1989. Imazamox, the last of the six, received its U.S. patent in 1994. The imidazolinone herbicides were discovered at American Cyanamid's Medical Division during the 1950s, starting from the initial lead molecule phthalimide. Years later, the molecule was found to exhibit herbicidal activity. The connection to AHAS was not understood at the time. A derivative of phthalimide showed promise when it exhibited some plant growth inhibition. Optimization ensued and the attempt to enable the production of field trial samples led to the formation of a tricyclic compound. The same reaction was performed on the original phthalimide, resulting in a compound that exhibited broad-spectrum herbicidal activity. Further exploration resulted in the formation of the first imidazolinone herbicide.


Properties

Imazaquin has a water solubility of 60 mg/L and its half-life in soil is 60 days. It is therefore categorized as a moderately persistent pesticide. When imazaquin is applied to crops its main interaction is with soil humic acids. It was found that the rate at which imazaquin aggregates on soil humic acids was most affected by the environmental pH. Imazaquin has shown greater adsorption at lower pHs. Adsorption is greatest at a pH nearest the pKa of the carboxylic group of imazaquin. At higher pHs, the hydrogen bonds and charge-transfer complexes that form during adsorption interactions are much weaker at higher pHs. The sorption coefficient is a means of specifying a pesticide's tendency to bind to soil particles. The greater the coefficient, the higher the sorption potential. A higher sorption coefficient means more hindrance of movement and possibly an increase in persistence as a result of protection from degradation. Imazaquin has a sorption coefficient of 20.


Uses

Imazaquin is primarily used as a herbicide to control weed growth on lawns and turf fields. Due to the fact that it is highly effective and selective, it is one of the most commonly used herbicides. It is classified as an imidazolinone herbicide that controls weed growth through the inhibition of specific amino acids that prove to be vital for plant growth. Imazaquin inhibits the acetohydroxy acid synthase (AHAS) enzyme accountable for synthesis of the amino acids valine, leucine, and isoleucine. When applied, imazaquin halts weed growth which eventually kills the weed or causes the weed to die due to its incapability to compete with surrounding vegetation. Imazaquin may be applied pre-plant incorporated, pre-plant surface, pre-emergence, or early post-emergence.


Synthesis

The reaction starts with the NH2 group of the benzenamine adding to the second carbonyl group on ''diethyl 2-oxobutanedioate (diethyl oxaloacetate)''.


Toxicity

Imazaquin is a relatively nontoxic, non-carcinogenic chemical causing none to minimal eye and skin irritation if contacted upon the dermis, ingested orally, or inhaled. It has a toxicity classification of III, which corresponds to only a slight toxicity. It is a relatively low toxicity pesticide that has the potential to find its way into food, drinking water, and residential areas. Although exposure to residential areas affects infants and children, there is no concern over its presence due to its low estimated aggregated risk which meets the FQPA safety standards. Inhalation, dermal, and oral exposure to imazaquin yielded relatively low Margin of Exposure values issued by the EPA deeming imazaquin as a minimal risk concern.


Animals

A study conducted by
Cornell University Cornell University is a private statutory land-grant research university based in Ithaca, New York. It is a member of the Ivy League. Founded in 1865 by Ezra Cornell and Andrew Dickson White, Cornell was founded with the intention to tea ...
showed that imazaquin ingested by humans and animals was excreted within 48 hours, 94% through
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excreted from the body through the urethra. Cellular ...
and 4% through feces. The LD50 for dogs, rats, rabbits, and female mice were each 1000 mg/kg, 5000 mg/kg, 2000 mg/kg, and 2363 mg/kg, respectively.
Chronic toxicity Chronic toxicity, the development of adverse effects as a result of long term exposure to a contaminant or other stressor, is an important aspect of aquatic toxicology. Adverse effects associated with chronic toxicity can be directly lethal but are ...
studies were also conducted upon rabbits, rats, and
beagle The beagle is a breed of small scent hound, similar in appearance to the much larger foxhound. The beagle was developed primarily for hunting hare, known as beagling. Possessing a great sense of smell and superior tracking instincts, th ...
dogs. Chronic dermal exposure to imazaquin in rabbits during a 21-day time period yielded no effects upon the rabbits. A 90-day and one-year study of ingestion of imazaquin in rats also yielded no effects as well. However, in the one year, dietary chronic imazaquin exposure to beagle dogs, the dogs exposed to the highest dose of imazaquin per day, 5000 ppm, experienced effects such as decreased body weight gain, skeletal myopathy, slight
anemia Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, t ...
, bone marrow hyperplasia, increased blood levels of SGOT, DSGPT and CPK, and increased
liver The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it ...
weight. Imazaquin is also nontoxic to birds and fish when properly used. Imazaquin tested negative for mutagen effects, organ toxicity, and reproductive effects.


Environment

Imazaquin is a non- volatile chemical leading to limited movement into soil that eventually breaks down within 4–6 months. The chemical breaks down microbially and is slowly reduced to
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and metabolites. When present in soil, imazaquin is absorbed through the roots of plants where the chemical is either metabolized quickly with no effects or slowly metabolized or not metabolized at all which eventually will lead to the death of the plant. As for its breakdown in surface water, imazaquin has a hydrolytic half-life of 5.5 months at pH 9. At pH 3 and 5, it is stable to
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolys ...
.


References


External links

* {{PPDB, 394 Herbicides Quinolines Carboxylic acids Imidazolines Lactams Isopropyl compounds