Hypothalamic–pituitary–gonadal axis
   HOME

TheInfoList



OR:

The hypothalamic–pituitary–gonadal axis (HPG axis, also known as the hypothalamic–pituitary–ovarian/testicular axis) refers to the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus ...
,
pituitary gland In vertebrate anatomy, the pituitary gland, or hypophysis, is an endocrine gland, about the size of a chickpea and weighing, on average, in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain. The h ...
, and gonadal glands as if these individual
endocrine gland Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testes, thy ...
s were a single entity. Because these glands often act in concert, physiologists and endocrinologists find it convenient and descriptive to speak of them as a single system. The HPG axis plays a critical part in the development and regulation of a number of the body's systems, such as the reproductive and immune systems. Fluctuations in this axis cause changes in the hormones produced by each gland and have various local and systemic effects on the body. The axis controls development, reproduction, and aging in animals.
Gonadotropin-releasing hormone Gonadotropin-releasing hormone (GnRH) is a releasing hormone responsible for the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is a tropic peptide hormone synthesized and released ...
(GnRH) is secreted from the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus ...
by GnRH-expressing neurons. The anterior portion of the
pituitary gland In vertebrate anatomy, the pituitary gland, or hypophysis, is an endocrine gland, about the size of a chickpea and weighing, on average, in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain. The h ...
produces
luteinizing hormone Luteinizing hormone (LH, also known as luteinising hormone, lutropin and sometimes lutrophin) is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) ...
(LH) and
follicle-stimulating hormone Follicle-stimulating hormone (FSH) is a gonadotropin, a glycoprotein polypeptide hormone. FSH is synthesized and secreted by the gonadotropic cells of the anterior pituitary gland and regulates the development, growth, pubertal maturation, ...
(FSH), and the gonads produce
estrogen Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal ac ...
and
testosterone Testosterone is the primary sex hormone and anabolic steroid in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristi ...
. In
oviparous Oviparous animals are animals that lay their eggs, with little or no other embryonic development within the mother. This is the reproductive method of most fish, amphibians, most reptiles, and all pterosaurs, dinosaurs (including birds), and m ...
organisms (e.g. fish, reptiles, amphibians, birds), the HPG axis is commonly referred to as the hypothalamus-pituitary-gonadal-liver axis (HPGL-axis) in females. Many egg-yolk and chorionic proteins are synthesized heterologously in the liver, which are necessary for ovocyte growth and development. Examples of such necessary liver proteins are vitellogenin and choriogenin. The HPA, HPG, and HPT axes are three pathways in which the hypothalamus and pituitary direct neuroendocrine function.


Location and regulation

The
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus ...
is located in the brain and secretes GnRH. GnRH travels down the anterior portion of the pituitary via the
hypophyseal portal system The hypophyseal portal system is a system of blood vessels in the microcirculation at the base of the brain, connecting the hypothalamus with the anterior pituitary. Its main function is to quickly transport and exchange hormones between the hy ...
and binds to receptors on the secretory cells of the adenohypophysis. In response to GnRH stimulation these cells produce LH and FSH, which travel into the blood stream. These two hormones play an important role in communicating to the gonads. In females FSH and LH act primarily to activate the
ovaries The ovary is an organ in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilized by a sperm. There is an ovary () found on each side of the body. T ...
to produce estrogen and inhibin and to regulate the
menstrual cycle The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that make pregnancy possible. The ovarian cycle controls the production and release of eggs ...
and
ovarian cycle The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that make pregnancy possible. The ovarian cycle controls the production and release of eggs a ...
. Estrogen forms a
negative feedback loop Negative feedback (or balancing feedback) occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by other ...
by inhibiting the production of GnRH in the hypothalamus.
Inhibin Activin and inhibin are two closely related protein complexes that have almost directly opposite biological effects. Identified in 1986, activin enhances FSH biosynthesis and secretion, and participates in the regulation of the menstrual c ...
acts to inhibit
activin Activin and inhibin are two closely related protein complexes that have almost directly opposite biological effects. Identified in 1986, activin enhances FSH biosynthesis and secretion, and participates in the regulation of the menstrual ...
, which is a peripherally produced hormone that positively stimulates GnRH-producing cells.
Follistatin Follistatin also known as activin-binding protein is a protein that in humans is encoded by the ''FST'' gene. Follistatin is an autocrine glycoprotein that is expressed in nearly all tissues of higher animals. Its primary function is the binding ...
, which is also produced in all body tissue, inhibits activin and gives the rest of the body more control over the axis. In males LH stimulates the interstitial cells located in the
testes A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testoste ...
to produce testosterone, and FSH plays a role in
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubu ...
. Only small amounts of estrogen are secreted in males. Recent research has shown that a neurosteroid axis exists, which helps the cortex to regulate the hypothalamus's production of GnRH. In addition,
leptin Leptin (from Greek λεπτός ''leptos'', "thin" or "light" or "small") is a hormone predominantly made by adipose cells and enterocytes in the small intestine that helps to regulate energy balance by inhibiting hunger, which in turn dimi ...
and
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism ...
have stimulatory effects and
ghrelin Ghrelin (; or lenomorelin, INN) is a hormone produced by enteroendocrine cells of the gastrointestinal tract, especially the stomach, and is often called a "hunger hormone" because it increases the drive to eat. Blood levels of ghrelin are hi ...
has inhibitory effects on
gonadotropin-releasing hormone Gonadotropin-releasing hormone (GnRH) is a releasing hormone responsible for the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is a tropic peptide hormone synthesized and released ...
(GnRH) secretion from the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus ...
.
Kisspeptin Kisspeptins (including kisspeptin-54 (KP-54), formerly known as metastin) are proteins encoded by the ''KISS1'' gene in humans. Kisspeptins are ligands of the G-protein coupled receptor, GPR54. ''Kiss1'' was originally identified as a human me ...
also influences GnRH secretion.


Function


Reproduction

One of the most important functions of the HPG axis is to regulate reproduction by controlling the uterine and ovarian cycles. In females, the
positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in th ...
loop between estrogen and luteinizing hormone help to prepare the follicle in the ovary and the uterus for ovulation and implantation. When the egg is released, the empty follicle sac begins to produce progesterone to inhibit the hypothalamus and the anterior pituitary thus stopping the estrogen-LH positive feedback loop. If conception occurs, the placenta will take over the secretion of progesterone; therefore the mother cannot ovulate again. If conception does not occur, decreasing excretion of progesterone will allow the hypothalamus to restart secretion of GnRH. These hormone levels also control the uterine (menstrual) cycle causing the proliferation phase in preparation for ovulation, the secretory phase after ovulation, and menstruation when conception does not occur. The activation of the HPG axis in both males and females during puberty also causes individuals to acquire secondary sex characteristics. In males, the production of GnRH, LH, and FSH are similar, but the effects of these hormones are different. FSH stimulates sustentacular cells to release androgen-binding protein, which promotes
testosterone Testosterone is the primary sex hormone and anabolic steroid in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteristi ...
binding. LH binds to the interstitial cells, causing them to secrete testosterone. Testosterone is required for normal spermatogenesis and inhibits the hypothalamus. Inhibin is produced by the spermatogenic cells, which, also through inactivating activin, inhibits the hypothalamus. After puberty these hormones levels remain relatively constant.


Life cycle

The activation and deactivation of the HPG axis also helps to regulate life cycles. At birth FSH and LH levels are elevated, and females also have a lifetime supply of primary oocytes. These levels decrease and remain low through childhood. During
puberty Puberty is the process of physical changes through which a child's body matures into an adult body capable of sexual reproduction. It is initiated by hormonal signals from the brain to the gonads: the ovaries in a girl, the testes in a ...
the HPG axis is activated by the secretions of estrogen from the ovaries or testosterone from the
testes A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testoste ...
. This activation of
estrogen Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal ac ...
and testosterone causes physiological and psychological changes. Once activated, the HPG axis continues to function in men for the rest of their life but becomes deregulated in women, leading to
menopause Menopause, also known as the climacteric, is the time in women's lives when menstrual periods stop permanently, and they are no longer able to bear children. Menopause usually occurs between the age of 47 and 54. Medical professionals often d ...
. This deregulation is caused mainly by the lack of oocytes that normally produce estrogen to create the positive feedback loop. Over several years, the activity the HPG axis decreases and women are no longer fertile. Although males remain fertile until death, the activity of the HPG axis decreases. As males age, the
testes A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testoste ...
begin to produce less testosterone, leading to a condition known as post-pubertal
hypogonadism Hypogonadism means diminished functional activity of the gonads—the testes or the ovaries—that may result in diminished production of sex hormones. Low androgen (e.g., testosterone) levels are referred to as hypoandrogenism and low estroge ...
. The cause of the decreased testosterone is unclear and a current topic of research. Post-pubertal hypogonadism results in progressive muscle mass decrease, increase in visceral fat mass, loss of libido, impotence, decreased attention, increased risk of fractures, and abnormal sperm production.


Sexual dimorphism and behavior

Sex steroids also affect behavior, because sex steroids affect the brains structure and functioning. During development, hormones help determine how neurons
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
and migrate to result in
sexual dimorphism Sexual dimorphism is the condition where the sexes of the same animal and/or plant species exhibit different morphological characteristics, particularly characteristics not directly involved in reproduction. The condition occurs in most an ...
s. These physical differences lead to differences in behavior. While GnRH has not been shown to have any direct influence on regulating brain structure and function, gonadotropins, sex steroids, and activin have been shown to have such effects. It is thought that FSH may have an important role in brain development and differentiation. Testosterone levels have been shown to relate to prosocial behavior. This helps create synaptogenesis by promoting neurite development and migration. Activin promotes neural plasticity throughout the lifespan and regulates the neurotransmitters of peripheral neurons. Environment can also affect hormones and behavior interaction.


Clinical relevance


Disorders

Disorders of the hypothalamic–pituitary–gonadal axis are classified by the World Health Organization (WHO) as: * WHO group I of ovulation disorders: ''Hypothalamic–pituitary failure'' * WHO group II of ovulation disorders: ''Hypothalamic–pituitary dysfunction''. WHO group II is the most common cause of ovulation disorders, and the most common causative member is
polycystic ovary syndrome Polycystic ovary syndrome, or PCOS, is the most common endocrine disorder in women of reproductive age. The syndrome is named after the characteristic cysts which may form on the ovaries, though it is important to note that this is a sign and no ...
(PCOS).


Gene mutations

Genetic mutations and chromosomal abnormalities are two sources of HPG axis alteration. Single mutations usually lead to changes in binding ability of the hormone and receptor leading to inactivation or over activation. These mutations can occur in the genes coding for GnRH, LH, and FSH or their receptors. Depending on which hormone and receptor are unable to bind different effects occur but all alter the HPG axis. For example, the male mutation of the GnRH coding gene could result in hypogonadotrophic hypogonadism. A mutation that cause a gain of function for LH receptor can result in a condition known as testotoxicosis, which cause puberty to occur between ages 2–3 years. Loss of function of LH receptors can cause male pseudohermaphroditism. In females mutations would have analogous effects. Hormone replacement can be used to initiate puberty and continue if the gene mutation occurs in the gene coding for the hormone. Chromosomal mutations tend to affect the androgen production rather than the HPG axis.


Suppression

The HPG axis can be suppressed by
hormonal birth control Hormonal contraception refers to birth control methods that act on the endocrine system. Almost all methods are composed of steroid hormones, although in India one selective estrogen receptor modulator is marketed as a contraceptive. The origina ...
administration. Although often described as preventing pregnancy by mimicking the pregnancy state, hormonal birth control is effective because it works on the HPG axis to mimic the luteal phase of a woman's cycle. The primary active ingredients are synthetic
progestins A progestogen, also referred to as a progestagen, gestagen, or gestogen, is a type of medication which produces effects similar to those of the natural female sex hormone progesterone in the body. A progestin is a ''synthetic'' progestogen. Pr ...
, which mimic biologically derived progesterone. The synthetic progestin prevents the hypothalamus from releasing GnRH and the pituitary from releasing LH and FSH; therefore it prevents the ovarian cycle from entering the menstrual phase and prevents follicle development and ovulation. Also as a result, many of the side effects are similar to the symptoms of pregnancy. Alzheimer's has been shown to have a hormonal component, which could possibly be used as a method to prevent the disease.
Male contraceptive Male contraceptives, also known as male birth control, are methods of preventing pregnancy that solely involve the male physiology. The most common kinds of male contraception include condoms, outercourse, and vasectomy. In domestic animals, ca ...
s utilizing sex hormones approach the problem in a similar way. The HPG axis can also be suppressed by
GnRH antagonist Gonadotropin-releasing hormone antagonists (GnRH antagonists) are a class of medications that antagonize the gonadotropin-releasing hormone receptor (GnRH receptor) and thus the action of gonadotropin-releasing hormone (GnRH). They are used in ...
s or continuous administration of GnRH agonist, such as in the following applications * Ovarian suppression as breast cancer management, to prevent the body's formation of estrogen which may stimulate breast cancer cells. This is generally done by continuous administration of GnRH agonist. * Ovulation suppression as part of
controlled ovarian hyperstimulation Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval (egg collec ...
in ''in vitro'' fertilization, in order to prevent the spontaneous ovulation of ovarian follicles before they can be harvested.


Stimulation

Ovulation induction is usually initially performed by giving an antiestrogen such as
clomifene citrate Clomifene, also known as clomiphene, is a medication used to treat infertility in women who do not ovulate, including those with polycystic ovary syndrome. Use results in a greater chance of twins. It is taken by mouth once a day, with a course ...
or letrozole in order to decrease negative feedback on the pituitary gland, resulting in an increase in FSH with the aim of increasing
folliculogenesis :''Although the process is similar in many animals, this article will deal exclusively with human folliculogenesis.'' In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains a ...
. It is the main initial medical treatment for anovulation.


Environment factors

Environment can have large impact on the HPG axis. For example, women with eating disorders tend to have oligomenorrhea and secondary amenorrhea. Starvation from anorexia nervosa or bulimia causes the HPG axis to deactivate causing women's ovarian and uterine cycles to stop. Stress, physical exercise, and weight loss have been correlated with oligomenorrhea and secondary amenorrhea. Similarly environmental factors can also affect men such as stress causing
impotence Erectile dysfunction (ED), also called impotence, is the type of sexual dysfunction in which the penis fails to become or stay erect during sexual activity. It is the most common sexual problem in men.Cunningham GR, Rosen RC. Overview of mal ...
. Prenatal exposure to alcohol can affect the hormones regulating fetal development resulting in foetal alcohol spectrum disorder.


Comparative anatomy

The HPG axis is highly conserved in the animal kingdom. While reproductive patterns may vary, the physical components and control mechanisms remain the same. The same hormones are used with some minor evolutionary modifications. Much of the research is done on animal models, because they mimic so well the control mechanism of humans. It is important to remember humans are the only species to hide their fertile period, but this effect is a difference in the effect of the hormones rather than a difference in the HPG axis.


See also

* Hypothalamic–pituitary–adrenal axis *
Hypothalamic–pituitary–thyroid axis The hypothalamic–pituitary–thyroid axis (HPT axis for short, a.k.a. thyroid homeostasis or thyrotropic feedback control) is part of the neuroendocrine system responsible for the regulation of metabolism and also responds to stress. As its n ...
* Hypothalamic–neurohypophyseal system *
Neuroendocrinology Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. The nervous and endocrine ...
* Reproductive endocrinology


References

{{DEFAULTSORT:Hypothalamic-Pituitary-Gonadal Axis Neuroendocrinology Menstrual cycle Gonadotropin-releasing hormone and gonadotropins Human female endocrine system