HOME
The Info List - Hydrogen Sulfide





Hydrogen
Hydrogen
sulfide is the chemical compound with the formula H 2S. It is a colorless gas with the characteristic odor of rotten eggs. It is very poisonous, corrosive, and flammable.[10] Hydrogen
Hydrogen
sulfide often results from the microbial breakdown of organic matter in the absence of oxygen gas, such as in swamps and sewers; this process is commonly known as anaerobic digestion. H 2S also occurs in volcanic gases, natural gas, and in some sources of well water. The human body produces small amounts of H 2S and uses it as a signaling molecule. Swedish chemist Carl Wilhelm Scheele
Carl Wilhelm Scheele
is credited with having discovered hydrogen sulfide in 1777. The British English
British English
spelling of this compound is hydrogen sulphide, but this spelling is not recommended by the International Union of Pure and Applied Chemistry (IUPAC) or the Royal Society of Chemistry.

Contents

1 Properties 2 Production 3 Uses

3.1 Production of sulfur, thioorganic compounds, and alkali metal sulfides 3.2 Analytical chemistry 3.3 Precursor to metal sulfides 3.4 Miscellaneous applications

4 Occurrence

4.1 Removal from water 4.2 Removal from fuel gases

5 Safety

5.1 Toxicity 5.2 Incidents 5.3 Suicides

6 Research 7 Induced hypothermia and suspended animation 8 Participant in the sulfur cycle 9 Mass extinctions 10 Life adapted to hydrogen sulfide 11 See also 12 References 13 Additional resources 14 External links

Properties[edit] Hydrogen
Hydrogen
sulfide is slightly denser than air; a mixture of H 2S and air can be explosive. Hydrogen
Hydrogen
sulfide burns in oxygen with a blue flame to form sulfur dioxide (SO 2) and water. In general, hydrogen sulfide acts as a reducing agent, especially in the presence of base, which forms SH−. At high temperatures or in the presence of catalysts, sulfur dioxide reacts with hydrogen sulfide to form elemental sulfur and water. This reaction is exploited in the Claus process, an important industrial method to dispose of hydrogen sulfide. Hydrogen
Hydrogen
sulfide is slightly soluble in water and acts as a weak acid (pKa = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS−. Hydrogen
Hydrogen
sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S2− is not formed in aqueous solution[11]. Hydrogen
Hydrogen
sulfide reacts with metal ions to form metal sulfides, which are insoluble, often dark colored solids. Lead(II) acetate
Lead(II) acetate
paper is used to detect hydrogen sulfide because it readily converts to lead(II) sulfide, which is black. Treating metal sulfides with strong acid often liberates hydrogen sulfide. At pressures above 90 GPa (gigapascal), hydrogen sulfide becomes a metallic conductor of electricity. When cooled below a critical temperature this high-pressure phase exhibits superconductivity. The critical temperature increases with pressure, ranging from 23 K at 100 GPa to 150 K at 200 GPa.[12] If hydrogen sulfide is pressurized at higher temperatures, then cooled, the critical temperature reaches 203 K (−70 °C), the highest accepted superconducting critical temperature as of 2015. By substituting a small part of sulfur with phosphorus and using even higher pressures, it has been predicted that it may be possible to raise the critical temperature to above 0 °C (273 K) and achieve room-temperature superconductivity.[13] Production[edit] Hydrogen
Hydrogen
sulfide is most commonly obtained by its separation from sour gas, which is natural gas with high content of H 2S. It can also be produced by treating hydrogen with molten elemental sulfur at about 450 °C. Hydrocarbons can serve as a source of hydrogen in this process.[14] Sulfate-reducing (resp. sulfur-reducing) bacteria generate usable energy under low-oxygen conditions by using sulfates (resp. elemental sulfur) to oxidize organic compounds or hydrogen; this produces hydrogen sulfide as a waste product. A standard lab preparation is to treat ferrous sulfide with a strong acid in a Kipp generator:

FeS + 2 HCl → FeCl2 + H2S

For use in qualitative inorganic analysis, thioacetamide is used to generate H 2S:

CH3C(S)NH2 + H2O → CH3C(O)NH2 + H2S

Many metal and nonmetal sulfides, e.g. aluminium sulfide, phosphorus pentasulfide, silicon disulfide liberate hydrogen sulfide upon exposure to water:[15]

6 H2O + Al2S3 → 3 H2S + 2 Al(OH)3

This gas is also produced by heating sulfur with solid organic compounds and by reducing sulfurated organic compounds with hydrogen. Water
Water
heaters can aid the conversion of sulfate in water to hydrogen sulfide gas. This is due to providing a warm environment sustainable for sulfur bacteria and maintaining the reaction which interacts between sulfate in the water and the water heater anode, which is usually made from magnesium metal.[16] Uses[edit] Production of sulfur, thioorganic compounds, and alkali metal sulfides[edit] The main use of hydrogen sulfide is as a precursor to elemental sulfur. Several organosulfur compounds are produced using hydrogen sulfide. These include methanethiol, ethanethiol, and thioglycolic acid.[14] Upon combining with alkali metal bases, hydrogen sulfide converts to alkali hydrosulfides such as sodium hydrosulfide and sodium sulfide:

H2S + NaOH → NaSH + H2O NaSH + NaOH → Na2S + H2O

These compounds are used in the paper making. Specifically, salts of SH− break bonds between lignin and cellulose components of pulp in the Kraft process.[14] Analytical chemistry[edit] For well over a century, hydrogen sulfide was important in analytical chemistry, in the qualitative inorganic analysis of metal ions. In these analyses, heavy metal (and nonmetal) ions (e.g., Pb(II), Cu(II), Hg(II), As(III)) are precipitated from solution upon exposure to H 2S. The components of the resulting precipitate redissolve with some selectivity, and are thus identified. Precursor to metal sulfides[edit] As indicated above, many metal ions react with hydrogen sulfide to give the corresponding metal sulfides. This conversion is widely exploited. For example, gases or waters contaminated by hydrogen sulfide can be cleaned with metals, by forming metal sulfides. In the purification of metal ores by flotation, mineral powders are often treated with hydrogen sulfide to enhance the separation. Metal parts are sometimes passivated with hydrogen sulfide. Catalysts used in hydrodesulfurization are routinely activated with hydrogen sulfide, and the behavior of metallic catalysts used in other parts of a refinery is also modified using hydrogen sulfide. Miscellaneous applications[edit] Hydrogen
Hydrogen
sulfide is used to separate deuterium oxide, or heavy water, from normal water via the Girdler sulfide process. Scientists from the University of Exeter
University of Exeter
discovered that cell exposure to small amounts of hydrogen sulfide gas can prevent mitochondrial damage. When the cell is stressed with disease, enzymes are drawn into the cell to produce small amounts of hydrogen sulfide. This study could have further implications on preventing strokes, heart disease and arthritis.[17] Hydrogen
Hydrogen
sulfide may have anti-aging properties by blocking destructive chemicals within the cell, bearing similar properties to resveratrol, an antioxidant found in red wine.[18] Occurrence[edit]

Deposit of sulfur on a rock, caused by volcanic gas

Small amounts of hydrogen sulfide occur in crude petroleum, but natural gas can contain up to 90%. Volcanoes and some hot springs (as well as cold springs) emit some H 2S, where it probably arises via the hydrolysis of sulfide minerals, i.e. MS + H 2O → MO + H 2S.[citation needed] Hydrogen
Hydrogen
sulfide can be present naturally in well water, often as a result of the action of sulfate-reducing bacteria. Hydrogen
Hydrogen
sulfide is created by the human body in small doses through bacterial breakdown of proteins containing sulfur in the intestinal tract. It is also produced in the mouth (halitosis).[19] A portion of global H 2S emissions are due to human activity. By far the largest industrial source of H 2S is petroleum refineries: The hydrodesulfurization process liberates sulfur from petroleum by the action of hydrogen. The resulting H 2S is converted to elemental sulfur by partial combustion via the Claus process, which is a major source of elemental sulfur. Other anthropogenic sources of hydrogen sulfide include coke ovens, paper mills (using the Kraft process), tanneries and sewerage. H 2S arises from virtually anywhere where elemental sulfur comes in contact with organic material, especially at high temperatures. Depending on environmental conditions, it is responsible for deterioration of material through the action of some sulfur oxidizing microorganisms. It is called biogenic sulfide corrosion. In 2011 it was reported that increased concentration of H 2S, possibly due to oil field practices, was observed in the Bakken formation crude and presented challenges such as "health and environmental risks, corrosion of wellbore, added expense with regard to materials handling and pipeline equipment, and additional refinement requirements".[20] Besides living near a gas and oil drilling operations, ordinary citizens can be exposed to hydrogen sulfide by being near waste water treatment facilities, landfills and farms with manure storage. Exposure occurs through breathing contaminated air or drinking contaminated water.[21] Removal from water[edit] A number of processes designed to remove hydrogen sulfide from drinking water.[22]

Continuous chlorination For levels up to 75 mg/L chlorine is used in the purification process as an oxidizing chemical to react with hydrogen sulfide. This reaction yields insoluble solid sulfur. Usually the chlorine used is in the form of sodium hypochlorite.[23]

Aeration For concentrations of hydrogen sulfide less than 2 mg/L aeration is an ideal treatment process. Oxygen
Oxygen
is added to water and a reaction between oxygen and hydrogen sulfide react to produce odorless sulfate[24]

Nitrate addition Calcium nitrate
Calcium nitrate
can be used to prevent hydrogen sulfide formation in wastewater streams.

Removal from fuel gases[edit] Hydrogen
Hydrogen
sulfide is commonly found in raw natural gas and biogas. It is typically removed by amine gas treating technologies. In such processes, the hydrogen sulfide is first converted to an ammonium salt, whereas the natural gas is unaffected.

RNH2 + H2S ⇌ RNH+ 3 + SH−

The bisulfide anion is subsequently regenerated by heating of the amine sulfide solution. Hydrogen
Hydrogen
sulfide generated in this process is typically converted to elemental sulfur using the Claus Process.

Process flow diagram of a typical amine treating process used in petroleum refineries, natural gas processing plants and other industrial facilities.

Safety[edit] Hydrogen
Hydrogen
sulfide is a highly toxic and flammable gas (flammable range: 4.3–46%). Being heavier than air, it tends to accumulate at the bottom of poorly ventilated spaces. Although very pungent at first, it quickly deadens the sense of smell, so victims may be unaware of its presence until it is too late. For safe handling procedures, a hydrogen sulfide safety data sheet (SDS) should be consulted.[25] Toxicity[edit] Hydrogen
Hydrogen
sulfide is a broad-spectrum poison, meaning that it can poison several different systems in the body, although the nervous system is most affected. The toxicity of H 2S is comparable with that of carbon monoxide.[26] It binds with iron in the mitochondrial cytochrome enzymes, thus preventing cellular respiration. Since hydrogen sulfide occurs naturally in the body, the environment, and the gut, enzymes exist to detoxify it. At some threshold level, believed to average around 300–350 ppm, the oxidative enzymes become overwhelmed. Many personal safety gas detectors, such as those used by utility, sewage and petrochemical workers, are set to alarm at as low as 5 to 10 ppm and to go into high alarm at 15 ppm. Detoxification is effected by oxidation to sulfate, which is harmless.[27] Hence, low levels of hydrogen sulfide may be tolerated indefinitely. Diagnostic of extreme poisoning by H 2S is the discolouration of copper coins in the pockets of the victim. Treatment involves immediate inhalation of amyl nitrite, injections of sodium nitrite, or administration of 4-dimethylaminophenol in combination with inhalation of pure oxygen, administration of bronchodilators to overcome eventual bronchospasm, and in some cases hyperbaric oxygen therapy (HBOT).[26] HBOT has clinical and anecdotal support.[28][29][30] Exposure to lower concentrations can result in eye irritation, a sore throat and cough, nausea, shortness of breath, and fluid in the lungs (pulmonary edema).[26] These effects are believed to be due to the fact that hydrogen sulfide combines with alkali present in moist surface tissues to form sodium sulfide, a caustic.[31] These symptoms usually go away in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headaches, irritability, poor memory, and dizziness. Chronic exposure to low level H 2S (around 2 ppm) has been implicated in increased miscarriage and reproductive health issues among Russian and Finnish wood pulp workers,[32] but the reports have not (as of circa 1995) been replicated. Short-term, high-level exposure can induce immediate collapse, with loss of breathing and a high probability of death. If death does not occur, high exposure to hydrogen sulfide can lead to cortical pseudolaminar necrosis, degeneration of the basal ganglia and cerebral edema.[26] Although respiratory paralysis may be immediate, it can also be delayed up to 72 hours.[33]

0.00047 ppm or 0.47 ppb is the odor threshold, the point at which 50% of a human panel can detect the presence of an odor without being able to identify it.[34] 10 ppm is the OSHA permissible exposure limit (PEL) (8 hour time-weighted average).[19] 10–20 ppm is the borderline concentration for eye irritation. 20 ppm is the acceptable ceiling concentration established by OSHA.[19] 50 ppm is the acceptable maximum peak above the ceiling concentration for an 8-hour shift, with a maximum duration of 10 minutes.[19] 50–100 ppm leads to eye damage. At 100–150 ppm the olfactory nerve is paralyzed after a few inhalations, and the sense of smell disappears, often together with awareness of danger.[35][36] 320–530 ppm leads to pulmonary edema with the possibility of death.[26] 530–1000 ppm causes strong stimulation of the central nervous system and rapid breathing, leading to loss of breathing. 800 ppm is the lethal concentration for 50% of humans for 5 minutes' exposure (LC50). Concentrations over 1000 ppm cause immediate collapse with loss of breathing, even after inhalation of a single breath.

Incidents[edit] Hydrogen
Hydrogen
sulfide was used by the British Army
British Army
as a chemical weapon during World War I. It was not considered to be an ideal war gas, but, while other gases were in short supply, it was used on two occasions in 1916.[37] In 1975, a hydrogen sulfide release from an oil drilling operation in Denver City, Texas, killed nine people and caused the state legislature to focus on the deadly hazards of the gas. State Representative E L Short
E L Short
took the lead in endorsing an investigation by the Texas Railroad Commission and urged that residents be warned "by knocking on doors if necessary" of the imminent danger stemming from the gas. One may die from the second inhalation of the gas, and a warning itself may be too late.[38] On September 2, 2005, a leak in the propeller room of a Royal Caribbean Cruise Liner docked in Los Angeles resulted in the deaths of 3 crewmen due to a sewage line leak. As a result, all such compartments are now required to have a ventillation system.[39][40] A dump of toxic waste containing hydrogen sulfide is believed to have caused 17 deaths and thousands of illnesses in Abidjan, on the West African coast, in the 2006 Côte d'Ivoire toxic waste dump. In 2014, Levels of Hydrogen
Hydrogen
Sulfide
Sulfide
as high as 83 ppm have been detected at a recently built mall in Thailand called Siam Square
Siam Square
One at the Siam Square
Siam Square
area. Shop tenants at the mall reported health complications such as sinus inflammation, breathing difficulties and eye irritation. After investigation it was determined that the large amount of gas originated from imperfect treatment and disposal of waste water in the building.[41] In November 2014, a substantial amount of hydrogen sulfide gas shrouded the central, eastern and southeastern parts of Moscow. Residents living in the area were urged to stay indoors by the emergencies ministry. Although the exact source of the gas was not known, blame had been placed on a Moscow
Moscow
oil refinery.[42] In June 2016, a mother and her daughter were found deceased in their still-running Porsche Cayenne
Porsche Cayenne
SUV against a guardrail on Florida's Turnpike, initially thought to be victims of Carbon
Carbon
monoxide poisoning.[43][44] Their deaths remained unexplained as the medical examiner waited for results of toxicology tests on the victims,[45] until urine tests revealed that hydrogen sulfide was the cause of death.[46] A report from the Orange-Osceola Medical Examiner’s Office indicated that toxic fumes came from the Porsche’s battery, located under the front passenger seat.[47][48] In January 2017, three utility workers in Key Largo, Florida, died one by one within seconds of descending into a narrow space beneath a manhole cover to check a section of paved street,[49] the hole was filled with hydrogen sulfide and methane gas created from years of rotted vegetation.[50] In an attempt to save the men, a firefighter who entered the hole without his air tank (because he could not fit through the hole with it) collapsed within seconds and had to be rescued by a colleague.[51][52] The firefighter was airlifted to Jackson Memorial Hospital and later recovered.[53][54] Suicides[edit] The gas, produced by mixing certain household ingredients, was used in a suicide wave in 2008 in Japan.[55] The wave prompted staff at Tokyo's suicide prevention center to set up a special hot line during "Golden Week", as they received an increase in calls from people wanting to kill themselves during the annual May holiday.[56] As of 2010, this phenomenon has occurred in a number of US cities, prompting warnings to those arriving at the site of the suicide.[57][58][59][60][61] These first responders, such as emergency services workers or family members are at risk of death from inhaling lethal quantities of the gas, or by fire.[62][63] Local governments have also initiated campaigns to prevent such suicides. Research[edit] Hydrogen
Hydrogen
sulfide is derived from cysteine by the enzymes cystathionine beta-synthase, cystathionine gamma-lyase, and 3-mercaptopyruvate sulfurtransferase. Hydrogen
Hydrogen
sulfide may act as an endothelium-derived relaxing factor from which it could affect vascular resistance,[64] and may be an endothelium-derived hyperpolarizing factor.[65] The gas is metabolized to sulfite in the mitochondria by thiosulfate reductase, and the sulfite is further oxidized to thiosulfate and sulfate by sulfite oxidase. The sulfates are excreted in the urine.[66] Hydrogen
Hydrogen
sulfide is under preliminary research for its potential actions in the brain where it could increase the response of the NMDA receptor and facilitate long term potentiation.[67] Its effects are potentially similar to those of nitric oxide, whereby hydrogen sulfide may have an effect on cardiovascular disease.[64] Although both nitric oxide and hydrogen sulfide relax blood vessels in vitro, their mechanisms of action differ: nitric oxide activates the enzyme guanylyl cyclase, whereas H 2S activates ATP-sensitive potassium channels in smooth muscle cells.[68] Induced hypothermia and suspended animation[edit] In 2005, it was shown that mice can be put into a state of suspended animation-like hypothermia by applying a low dosage of hydrogen sulfide (81 ppm H 2S) in the air. The breathing rate of the animals sank from 120 to 10 breaths per minute and their temperature fell from 37 °C to just 2 °C above ambient temperature (in effect, they had become cold-blooded). The mice survived this procedure for 6 hours and afterwards showed no negative health consequences.[69] In 2006 it was shown that the blood pressure of mice treated in this fashion with hydrogen sulfide did not significantly decrease.[70] A similar process known as hibernation occurs naturally in many mammals and also in toads, but not in mice. (Mice can fall into a state called clinical torpor when food shortage occurs.) If the H 2S-induced hibernation can be made to work in humans, it could be useful in the emergency management of severely injured patients, and in the conservation of donated organs. In 2008, hypothermia induced by hydrogen sulfide for 48 hours was shown to reduce the extent of brain damage caused by experimental stroke in rats.[71] As mentioned above, hydrogen sulfide binds to cytochrome oxidase and thereby prevents oxygen from binding, which leads to the dramatic slowdown of metabolism. Animals and humans naturally produce some hydrogen sulfide in their body; researchers have proposed that the gas is used to regulate metabolic activity and body temperature, which would explain the above findings.[72] Two recent studies cast doubt that the effect can be achieved in larger mammals. A 2008 study failed to reproduce the effect in pigs, concluding that the effects seen in mice were not present in larger mammals.[73] Likewise a paper by Haouzi et al. noted that there is no induction of hypometabolism in sheep, either.[74] At the February 2010 TED conference, Mark Roth announced that hydrogen sulfide induced hypothermia in humans had completed Phase I clinical trials.[75] The clinical trials commissioned by the company he helped found, Ikaria, were however withdrawn or terminated by August 2011.[76][77] Participant in the sulfur cycle[edit] Main article: Sulfur
Sulfur
cycle

Sludge
Sludge
from a pond; the black color is due to metal sulfides

Hydrogen
Hydrogen
sulfide is a central participant in the sulfur cycle, the biogeochemical cycle of sulfur on Earth.[78] In the absence of oxygen, sulfur-reducing and sulfate-reducing bacteria derive energy from oxidizing hydrogen or organic molecules by reducing elemental sulfur or sulfate to hydrogen sulfide. Other bacteria liberate hydrogen sulfide from sulfur-containing amino acids; this gives rise to the odor of rotten eggs and contributes to the odor of flatulence. As organic matter decays under low-oxygen (or hypoxic) conditions (such as in swamps, eutrophic lakes or dead zones of oceans), sulfate-reducing bacteria will use the sulfates present in the water to oxidize the organic matter, producing hydrogen sulfide as waste. Some of the hydrogen sulfide will react with metal ions in the water to produce metal sulfides, which are not water-soluble. These metal sulfides, such as ferrous sulfide FeS, are often black or brown, leading to the dark color of sludge. Several groups of bacteria can use hydrogen sulfide as fuel, oxidizing it to elemental sulfur or to sulfate by using dissolved oxygen, metal oxides (e.g., Fe oxyhydroxides and Mn oxides) or nitrate as oxidant.[79] The purple sulfur bacteria and the green sulfur bacteria use hydrogen sulfide as electron donor in photosynthesis, thereby producing elemental sulfur. (In fact, this mode of photosynthesis is older than the mode of cyanobacteria, algae, and plants, which uses water as electron donor and liberates oxygen.) The biochemistry of hydrogen sulfide is an important part of the chemistry of the iron-sulfur world. In this model of the origin of life on Earth, geologically produced hydrogen sulfide is postulated as an electron donor driving the reduction of carbon dioxide.[80] Mass extinctions[edit] Main article: Anoxic event

A hydrogen sulfide bloom (green) stretching for about 150km along the coast of Namibia. As oxygen-poor water reaches the coast, bacteria in the organic-matter rich sediment produce hydrogen sulfide which is toxic to fish. (The image is taken from a bird's eye view.)

Hydrogen
Hydrogen
sulfide has been implicated in several mass extinctions that have occurred in the Earth's past. In particular, a buildup of hydrogen sulfide in the atmosphere may have caused the Permian-Triassic extinction event
Permian-Triassic extinction event
252 million years ago.[81] Organic residues from these extinction boundaries indicate that the oceans were anoxic (oxygen-depleted) and had species of shallow plankton that metabolized H 2S. The formation of H 2S may have been initiated by massive volcanic eruptions, which emitted carbon dioxide and methane into the atmosphere, which warmed the oceans, lowering their capacity to absorb oxygen that would otherwise oxidize H 2S. The increased levels of hydrogen sulfide could have killed oxygen-generating plants as well as depleted the ozone layer, causing further stress. Small H 2S blooms have been detected in modern times in the Dead Sea
Dead Sea
and in the Atlantic ocean
Atlantic ocean
off the coast of Namibia.[81] Life adapted to hydrogen sulfide[edit] High levels of hydrogen sulfide are lethal to most animals, but a few highly specialized species (extremophiles) do thrive in habitats that are rich in this chemical.[82] Freshwater springs rich in hydrogen sulfide are mainly home to invertebrates, but also include a small number of fish: Cyprinodon bobmilleri (a pupfish from Mexico), Limia sulphurophila (a poeciliid from the Dominican Republic), Gambusia eurystoma
Gambusia eurystoma
(a poeciliid from Mexico), and a few Poecilia
Poecilia
(poeciliids from Mexico).[82][83] Invertebrates and microorganisms in some cave systems, such as Movile Cave, are adapted to high levels of hydrogen sulfide.[84] In the deep sea, hydrothermal vents and cold seeps with high levels of hydrogen sulfide are home to a number of extremely specialized lifeforms, ranging from bacteria to fish.[which?][85] Because of the absence of light at these depths, these ecosystems rely on chemosynthesis rather than photosynthesis.[86] See also[edit]

Amine gas treating Gasotransmitters Hydrogen
Hydrogen
chalcogenide Induced hypothermia Jenkem Sewer gas

References[edit]

^ " Hydrogen
Hydrogen
Sulfide
Sulfide
- PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information.  ^ Perrin, D.D. (1982). Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution (2nd ed.). Oxford: Pergamon Press.  ^ Bruckenstein, S.; Kolthoff, I.M., in Kolthoff, I.M.; Elving, P.J. Treatise on Analytical Chemistry, Vol. 1, pt. 1; Wiley, NY, 1959, pp. 432–433. ^ Patnaik, Pradyot (2002). Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 0-07-049439-8.  ^ a b Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin Company. p. A23. ISBN 0-618-94690-X.  ^ http://msds.chem.ox.ac.uk/HY/hydrogen_sulfide.html ^ a b c "NIOSH Pocket Guide to Chemical Hazards #0337". National Institute for Occupational Safety and Health (NIOSH).  ^ a b " Hydrogen
Hydrogen
sulfide". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).  ^ " Hydrogen
Hydrogen
sulfide". npi.gov.au.  ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.  ^ May, P.M.; Batka, D.; Hefter, G.; Könignberger, E.; Rowland, D. (2018). "Goodbye to S2-". Chem. Comm. 54 (16): 1980. doi:10.1039/c8cc00187a. PMID 29404555.  ^ Drozdov, A.; Eremets, M. I.; Troyan, I. A. (2014). "Conventional superconductivity at 190 K at high pressures". arXiv:1412.0460  [cond-mat.supr-con].  ^ Cartlidge, Edwin (18 August 2015). " Superconductivity
Superconductivity
record sparks wave of follow-up physics". Nature News. Retrieved 18 August 2015.  ^ a b c Francois Pouliquen; Claude Blanc; Emmanuel Arretz; Ives Labat; Jacques Tournier-Lasserve; Alain Ladousse; Jean Nougayrede; Gérard Savin; Raoul Ivaldi; Monique Nicolas; Jean Fialaire; René Millischer; Charles Azema; Lucien Espagno; Henri Hemmer; Jacques Perrot (200). " Hydrogen
Hydrogen
Sulfide". Ullmann's Encyclopedia of Chemical Industry. doi:10.1002/14356007.a13_467.  ^ McPherson, William (1913). Laboratory manual. Boston: Ginn and Company. p. 445.  ^ "Why Does My Water
Water
Smell Like Rotten Eggs? Hydrogen
Hydrogen
Sulfide
Sulfide
and Sulfur
Sulfur
Bacteria in Well Water". Minnesota Department of Health. Minnesota Department of Health. Retrieved 1 December 2014.  ^ Stampler, Laura. "A Stinky Compound May Protect Against Cell Damage, Study Finds". Time. Time. Retrieved 1 December 2014.  ^ Khan, Natasha. "Rotten Egg Gas
Gas
Seen Offering Promise of Extending Life". Bloomberg. Bloomberg. Retrieved 1 December 2014.  ^ a b c d Agency for Toxic
Toxic
Substances and Disease Registry (July 2006). "Toxicological Profile For Hydrogen
Hydrogen
Sulfide" (PDF). p. 154. Retrieved 2012-06-20.  ^ OnePetro. "Home - OnePetro". onepetro.org.  ^ " Hydrogen
Hydrogen
Sulfide" (PDF). Agency for Toxic
Toxic
Substances and Disease Registry. December 2016.  ^ Lemley, Ann T.; Schwartz, John J.; Wagenet, Linda P. "Hydrogen Sulfide
Sulfide
in Household Drinking Water" (PDF). Cornell University.  ^ " Hydrogen
Hydrogen
Sulfide
Sulfide
(Rotten Egg Odor) in Pennsylvania Groundwater Wells". Penn State. Penn State College of Agricultural Sciences. Retrieved 1 December 2014.  ^ McFarland, Mark L.; Provin, T. L. " Hydrogen
Hydrogen
Sulfide
Sulfide
in Drinking Water
Water
Treatment Causes and Alternatives" (PDF). Texas A&M University. Retrieved 1 December 2014.  ^ Iowa State University, Department of Chemistry MSDS. "Hydrogen Sulfide
Sulfide
Material Safety Data Sheet" (PDF). Archived from the original (PDF) on 2009-03-27. Retrieved 2009-03-14.  ^ a b c d e Lindenmann, J.; Matzi, V.; Neuboeck, N.; Ratzenhofer-Komenda, B.; Maier, A; Smolle-Juettner, F. M. (December 2010). "Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen". Diving and Hyperbaric Medicine. 40 (4): 213–217. PMID 23111938. Retrieved 2013-06-07.  ^ Ramasamy, S.; Singh, S.; Taniere, P.; Langman, M. J. S.; Eggo, M. C. (2006). "Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation". Am. J. Physiol. Gastrointest. Liver Physiol. 291 (2): G288–96. doi:10.1152/ajpgi.00324.2005. PMID 16500920. Retrieved 2007-10-20.  ^ Gerasimon, G.; Bennett, S.; Musser, J.; Rinard, J. (May 2007). "Acute hydrogen sulfide poisoning in a dairy farmer". Clin. Toxicol. 45 (4): 420–423. doi:10.1080/15563650601118010. PMID 17486486. Retrieved 2008-07-22.  ^ Belley, R.; Bernard, N.; Côté, M; Paquet, F.; Poitras, J. (July 2005). " Hyperbaric oxygen therapy
Hyperbaric oxygen therapy
in the management of two cases of hydrogen sulfide toxicity from liquid manure". CJEM. 7 (4): 257–261. doi:10.1017/s1481803500014408. PMID 17355683. Retrieved 2008-07-22.  ^ Hsu, P.; Li, H.-W.; Lin, Y.-T. (1987). "Acute hydrogen sulfide poisoning treated with hyperbaric oxygen". J. Hyperbaric Med. 2 (4): 215–221. ISSN 0884-1225. Retrieved 2008-07-22.  ^ Lewis, R.J. (1996). Sax's Dangerous Properties of Industrial Materials. 1–3 (9th ed.). New York, NY: Van Nostrand Reinhold.  ^ Hemminki, K.; Niemi, M. L. (1982). "Community study of spontaneous abortions: relation to occupation and air pollution by sulfur dioxide, hydrogen sulfide, and carbon disulfide". Int. Arch. Occup. Environ. Health. 51 (1): 55–63. doi:10.1007/bf00378410. PMID 7152702.  ^ "The chemical suicide phenomenon". Firerescue1.com. 2011-02-07. Retrieved 2013-12-19.  ^ Iowa State University
Iowa State University
Extension (May 2004). "The Science of Smell Part 1: Odor
Odor
perception and physiological response" (PDF). PM 1963a. Retrieved 2012-06-20.  ^ USEPA; Health and Environmental Effects Profile for Hydrogen
Hydrogen
Sulfide p.118-8 (1980) ECAO-CIN-026A ^ Zenz, C.; Dickerson, O.B.; Horvath, E.P. (1994). Occupational Medicine (3rd ed.). St. Louis, MO. p. 886.  ^ Foulkes, Charles Howard (2001) [First published Blackwood & Sons, 1934]. "Gas!" The story of the special brigade. Published by Naval & Military P. p. 105. ISBN 1-84342-088-0.  ^ Howard Swindle, "The Deadly Smell of Success". Texas Monthly, June 1975. June 1975. Retrieved December 14, 2010.  ^ County of Los Angeles: Department of Public Health (PDF) http://publichealth.lacounty.gov/acd/reports/spclrpts/spcrpt05/DeathsHydrogenSulfide05.pdf.  Missing or empty title= (help) ^ " Gas
Gas
Kills 3 Crewmen on Ship". Los Angeles Times.  ^ "Do not breathe: Dangerous, toxic gas found at Siam Square
Siam Square
One". Coconuts Bangkok. Coconuts Media. Retrieved 20 November 2014.  ^ "Russian capital Moscow
Moscow
shrouded in noxious gas". BBC News Europe. British Broadcasting Corporation. Retrieved 1 December 2014.  ^ "Sources: Mom, daughter found dead in Porsche likely died from carbon monoxide". WFTV. 7 June 2016. Retrieved 28 April 2017. Both had red skin and rash-like symptoms, and had vomited, sources said.  ^ Salinger, Tobias (4 October 2016). "Woman, girl died after inhaling hydrogen sulfide, coroners say". New York Daily News. Retrieved 28 April 2017.  ^ Lotan, Gal Tziperman (4 October 2016). " Hydrogen
Hydrogen
sulfide inhalation killed mother, toddler found on Florida's Turnpike in June". Orlando Sentinel. Retrieved 28 April 2017.  ^ Zilber, Ariel. "Florida woman and her daughter who died in Porsche inhaled toxic gas". dailymail.co.uk. Mail Online. Retrieved 28 April 2017.  ^ Kealing, Bob. "Medical examiner confirms suspected cause of deaths in Turnpike mystery". Archived from the original on 2016-10-05. Retrieved 2016-10-04.  ^ Bell, Lisa (19 March 2017). "Hidden car dangers you should be aware of". ClickOrlando.com. Produced by Donovan Myrie. WKMG-TV. Retrieved 28 April 2017. Porsche Cayennes, along with a few other vehicles, have their batteries in the passenger compartment.  ^ https://www.washingtonpost.com/amphtml/news/morning-mix/wp/2017/01/18/three-utility-workers-descend-to-their-deaths-in-florida-manhole-overcome-by-fumes/ ^ Rabin, Charles; Goodhue, David (16 January 2017). "Three Keys utility workers die in wastewater trench". Miami Herald. Retrieved 28 April 2017.  ^ Herrin, Becky (16 January 2017). "Detectives investigating deaths of three men". floridakeyssheriff.blogspot.com. Monroe County Sheriff's Office. Retrieved 28 April 2017.  ^ Goodhue, David (17 January 2017). "Firefighter who tried to save 3 men in a manhole is fighting for his life". Miami Herald. Retrieved 28 April 2017.  ^ "Key Largo firefighter takes first steps since nearly getting killed". WSVN. 18 January 2017. Retrieved 28 April 2017.  ^ "Firefighter who survived Key Largo rescue attempt that killed 3 leaves hospital". Sun-Sentinel. Associated Press. 26 January 2017. Retrieved 28 April 2017.  ^ "Dangerous Japanese 'Detergent Suicide' Technique Creeps Into U.S". Wired.com. Wired. March 13, 2009.  ^ Namiki, Noriko (2008-05-22). "Terrible Twist in Japan Suicide
Suicide
Spates - ABC News". Abcnews.go.com. Retrieved 2013-12-19.  ^ http://info.publicintelligence.net/LARTTAChydrogensulfide.pdf ^ http://info.publicintelligence.net/MAchemicalsuicide.pdf ^ http://info.publicintelligence.net/illinoisH2Ssuicide.pdf ^ http://info.publicintelligence.net/NYhydrogensulfide.pdf ^ http://info.publicintelligence.net/KCTEWhydrogensulfide.pdf ^ dhmh.maryland.gov Archived January 3, 2012, at the Wayback Machine. ^ Scoville, Dean (April 2011). "Chemical Suicides - Article - POLICE Magazine". Policemag.com. Retrieved 2013-12-19.  ^ a b Lefer, David J. (November 2007). "A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide". PNAS. 104 (46): 17907–17908. Bibcode:2007PNAS..10417907L. doi:10.1073/pnas.0709010104. PMC 2084269 . PMID 17991773. Retrieved 2008-09-26.  ^ Paul, B. D.; Snyder, S. H. (2012). "H2S signalling through protein sulfhydration and beyond". Nat Rev Mol Cell Biol. 13 (8): 499–507. doi:10.1038/nrm3391. PMID 22781905.  ^ Kamoun, Pierre (July 2004). "H2S, a new neuromodulator". Médecine/Sciences. 20 (6–7): 697–700. doi:10.1051/medsci/2004206-7697. PMID 15329822.  ^ Kimura, Hideo (2002). " Hydrogen
Hydrogen
sulfide as a neuromodulator". Molecular Neurobiology. 26 (1): 13–19. doi:10.1385/MN:26:1:013. PMID 12392053.  ^ Toxic
Toxic
Gas, Lifesaver, Scientific American, March 2010 ^ "BBC News - Science/Nature - Mice put in 'suspended animation'". bbc.co.uk.  ^ "BBC News - Science/Nature - Mice put in 'suspended animation'". bbc.co.uk.  ^ Florian, B.; Vintilescu, R.; Balseanu, A. T.; Buga, A.-M.; Grisk, O.; Walker, L. C.; Kessler, C.; Popa-Wagner, A. (2008). "Long-term hypothermia reduces infarct volume in aged rats after focal ischemia". Neuroscience Letters. 438 (2): 180–185. doi:10.1016/j.neulet.2008.04.020. PMID 18456407.  ^ Roth, Mark B.; Nystul, Todd (1 June 2005). "Buying Time in Suspended Animation". Scientific American.  ^ Li, Jia; Zhang, Gencheng; Cai, Sally; Redington, Andrew N. (January 2008). "Effect of inhaled hydrogen sulfide on metabolic responses in anesthetized, paralyzed, and mechanically ventilated piglets". Pediatric Critical Care Medicine. 9 (1): 110–112. doi:10.1097/01.PCC.0000298639.08519.0C. PMID 18477923. Retrieved 2008-02-07. H2S does not appear to have hypometabolic effects in ambiently cooled large mammals and conversely appears to act as a hemodynamic and metabolic stimulant.  ^ Haouzi, P.; Notet, V.; Chenuel, B.; Chalon, B; Sponne, I.; Ogier, V.; et al. (2008). "H2S induced hypometabolism in mice is missing in sedated sheep". Respir. Physiol. Neurobiol. 160 (1): 109–115. doi:10.1016/j.resp.2007.09.001. PMID 17980679.  ^ "Mark Roth: Suspended animation
Suspended animation
is within our grasp".  ^ "IK-1001 (Sodium Sulfide
Sulfide
(Na2S) for Injection) in Subjects With Acute ST-Segment Elevation Myocardial Infarction". ClinicalTrials.gov. 2010-11-04. This study has been withdrawn prior to enrollment. ( Company decision. Non-safety related )  ^ "Reduction of Ischemia-Reperfusion Mediated Cardiac Injury in Subjects Undergoing Coronary Artery Bypass Graft Surgery". ClinicalTrials.gov. 2011-08-03. This study has been terminated. ( Study Terminated - Company decision )  ^ Barton, Larry L.; Fardeau, Marie-Laure; Fauque, Guy D. (2014). "Chapter 10. Hydrogen
Hydrogen
Sulfide: A Toxic
Toxic
Gas
Gas
Produced by Dissimilatory Sulfate
Sulfate
and Sulfur
Sulfur
Reduction and Consumed by Microbial Oxidation". In Kroneck, Peter M.H.; Sosa Torres, Martha E. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. 14. Springer. pp. 237–277. doi:10.1007/978-94-017-9269-1_10.  ^ Jørgensen, B. B.; Nelson, D. C. (2004). " Sulfide
Sulfide
oxidation in marine sediments: Geochemistry meets microbiology". In Amend, J. P.; Edwards, K. J.; Lyons, T. W. Sulfur
Sulfur
Biogeochemistry – Past and Present. Geological Society of America. pp. 36–81.  ^ "The very first surface organism can be characterized as a catalyst for accelerating the formation of pyrite by providing a catalytic pathway for the flow of electrons from hydrogen sulfide to carbon dioxide." Wächtershäuser, Günter (1988-12-01). "Before enzymes and templates: theory of surface metabolism". Microbiol. Mol. Biol. Rev. 52 (4): 452–84. PMC 373159 . PMID 3070320. Retrieved July 25, 2015.  ^ a b "Impact From the Deep" in the October 2006 issue of Scientific American ^ a b Tobler, M; Riesch, R.; García de León, F. J.; Schlupp, I.; Plath, M. (2008). "Two endemic and endangered fishes, Poecilia sulphuraria (Álvarez, 1948) and Gambusia eurystoma
Gambusia eurystoma
Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat". Journal of Fish Biology. 72 (3): 523–533. doi:10.1111/j.1095-8649.2007.01716.x.  ^ Palacios, Maura; Arias-Rodríguez, Lenín; Plath, Martin; Eifert, Constanze; Lerp, Hannes; Lamboj, Anton; Voelker, Gary; Tobler, Michael (2013). "The Rediscovery of a Long Described Species Reveals Additional Complexity in Speciation Patterns of Poeciliid
Poeciliid
Fishes in Sulfide
Sulfide
Springs". PLoS ONE. 8 (8): e71069. doi:10.1371/journal.pone.0071069. PMC 3745397 . PMID 23976979.  ^ Kumaresan, Deepak; Wischer, Daniela; Stephenson, Jason; Hillebrand-Voiculescu, Alexandra; Murrell, J. Colin (2014). "Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem". Geomicrobiology Journal. 31 (3): 186–193. doi:10.1080/01490451.2013.839764. ISSN 0149-0451.  ^ Bernardino, Angelo F.; Levin, Lisa A.; Thurber, Andrew R.; Smith, Craig R. (2012). "Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls". PLoS ONE. 7 (4): e33515. doi:10.1371/journal.pone.0033515. PMC 3319539 . PMID 22496753.  ^ "Hydrothermal Vents". Marine Society of Australia. Retrieved 28 December 2014. 

Additional resources[edit]

Committee on Medical and Biological Effects of Environmental Pollutants (1979). Hydrogen
Hydrogen
Sulfide. Baltimore: University Park Press. ISBN 0-8391-0127-9.  Siefers, Andrea (2010). A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles (MS thesis). Iowa State University. Retrieved 8 February 2013. 

External links[edit]

Wikimedia Commons has media related to Hydrogen
Hydrogen
sulfide.

International Chemical Safety Card 0165 Concise International Chemical Assessment Document 53 National Pollutant Inventory - Hydrogen
Hydrogen
sulfide fact sheet NIOSH Pocket Guide to Chemical Hazards NACE (National Association of Corrosion Epal)

v t e

Hydrogen
Hydrogen
compounds

H3AsO3 H3AsO4 HAt HSO3F HBF4 HBr HBrO HBrO2 HBrO3 HBrO4 HCl HClO HClO2 HClO3 HClO4 HCN HCNO H2CrO4/H2Cr2O7 H2CO3 H2CS3 HF HFΟ HI HIO HIO2 HIO3 HIO4 HMnO4 H2MoO4 HNC NaHCO3 HNCO HNO HNO2 HNO3 H2N2O2 HNO5S H3NSO3 H2O H2O2 H2O3 H3PO2 H3PO3 H3PO4 H4P2O7 H5P3O10 H2PtCl6 H2S H2S2 H2Se H2SeO3 H2SeO4 H4SiO4 H2SiF6 HSCN HNSC H2SO3 H2SO4 H2SO5 H2S2O3 H2S2O6 H2S2O7 H2S2O8 CF3SO3H H2Te H2TeO3 H6TeO6 H4TiO4 H2Po HCo(CO)4

v t e

Neurotransmitters

Amino acid-derived

Major excitatory/inhibitory systems: Glutamate system: Agmatine Aspartic acid
Aspartic acid
(aspartate) Cycloserine Glutamic acid
Glutamic acid
(glutamate) Glutathione Glycine GSNO GSSG Kynurenic acid NAA NAAG Proline Serine; GABA system: GABA GABOB GHB; Glycine
Glycine
system: α-Alanine β-Alanine Glycine Hypotaurine Proline Sarcosine Serine Taurine; GHB system: GHB T-HCA (GHC)

Biogenic amines: Monoamines: 6-OHM Dopamine Epinephrine
Epinephrine
(adrenaline) NAS (normelatonin) Norepinephrine
Norepinephrine
(noradrenaline) Serotonin
Serotonin
(5-HT); Trace amines: 3-Iodothyronamine N-Methylphenethylamine N-Methyltryptamine m-Octopamine p-Octopamine Phenylethanolamine Phenethylamine Synephrine Tryptamine m-Tyramine p-Tyramine; Others: Histamine

Neuropeptides: See here instead.

Lipid-derived

Endocannabinoids: 2-AG 2-AGE (noladin ether) 2-ALPI 2-OG AA-5-HT Anandamide
Anandamide
(AEA) DEA LPI NADA NAGly OEA Oleamide PEA RVD-Hpα SEA Virodhamine
Virodhamine
(O-AEA)

Neurosteroids: See here instead.

Nucleobase-derived

Nucleosides: Adenosine
Adenosine
system: Adenosine ADP AMP ATP

Vitamin-derived

Cholinergic system: Acetylcholine

Miscellaneous

Gasotransmitters: Carbon monoxide
Carbon monoxide
(CO) Hydrogen
Hydrogen
sulfide (H2S) Nitric oxide
Nitric oxide
(NO); Candidates: Acetaldehyde Ammonia
Ammonia
(NH3) Carbonyl sulfide
Carbonyl sulfide
(COS) Nitrous oxide
Nitrous oxide
(N2O) Sulfur
Sulfur
dioxide (SO2)

v t e

Damps

Afterdamp Blackdamp Firedamp Stinkdamp Whitedamp

v t e

Sulfur
Sulfur
compounds

Al2S3 As2S2 As2S3 As5S2 As4S4 Au2S3 B2S3 BaS BeS Bi2S3 Br2S Br2S2 CS2 C3S2 CaS CdS CeS SCl2 S2Cl2 CoS Cr2S3 CuS D2S Dy2S3 Er2S3 EuS SF4 SF6 FeS2 GaS H2S HfS2 HgS InS I2S LaS LiS MgS MoS3 NiS SO2 SO3 P4S7 PbS PbS2 PtS ReS2 SrS TlS SV SeS2 S2U WS2 Sb2S3 Sb2S5 Sm2S3 Y2S3 Ag2SO4 SOBr2 CSTe C2H4S C2H6S3 C4H4S CaSO4 C32H66S2 CuFeS2 H2SO4 H2SO3 F2OS NaHS K2SO3 O3S3Sb4 Yb2(SO4)3 AlKO8S2 CHCl3S KSCN CdSO3 PSCl3 SOCl2 Cs2O4S Re2S7 Na2S K2S H2S2O7 H2SO5 NH5S HgSO4 K2SO4 RaSO4 SnSO4 SrSO4 Zr(SO4)2 Ti(SO4)2 Tm2(SO4)3 AlNa(SO4)2 Er2(SO4)3 Eu2(SO4)3 CHNS Co(SCN)2 C2H3SN PSI3 ZrS2 SiS CSSe

Chemical formulas

v t e

Molecules detected in outer space

Molecules

Diatomic

Aluminium monochloride Aluminium monofluoride Aluminium monoxide Argonium Carbon
Carbon
monophosphide Carbon
Carbon
monosulfide Carbon
Carbon
monoxide Carborundum Cyanogen
Cyanogen
radical Diatomic carbon Fluoromethylidynium Hydrogen
Hydrogen
chloride Hydrogen
Hydrogen
fluoride Hydrogen
Hydrogen
(molecular) Hydroxyl radical Iron(II) oxide Magnesium
Magnesium
monohydride cation Methylidyne radical Nitric oxide Nitrogen
Nitrogen
(molecular) Nitrogen
Nitrogen
monohydride Nitrogen
Nitrogen
sulfide Oxygen
Oxygen
(molecular) Phosphorus monoxide Phosphorus mononitride Potassium chloride Silicon carbide Silicon mononitride Silicon monoxide Silicon monosulfide Sodium chloride Sodium iodide Sulfur
Sulfur
monohydride Sulfur
Sulfur
monoxide Titanium oxide

Triatomic

Aluminium hydroxide Aluminium isocyanide Amino radical Carbon
Carbon
dioxide Carbonyl sulfide CCP radical Chloronium Diazenylium Dicarbon monoxide Disilicon carbide Ethynyl radical Formyl radical Hydrogen
Hydrogen
cyanide (HCN) Hydrogen
Hydrogen
isocyanide (HNC) Hydrogen
Hydrogen
sulfide Hydroperoxyl Iron
Iron
cyanide Isoformyl Magnesium
Magnesium
cyanide Magnesium
Magnesium
isocyanide Methylene radical N2H+ Nitrous oxide Nitroxyl Ozone Phosphaethyne Potassium cyanide Protonated molecular hydrogen Sodium cyanide Sodium hydroxide Silicon carbonitride c-Silicon dicarbide Silicon naphthalocyanine Sulfur
Sulfur
dioxide Thioformyl Thioxoethenylidene Titanium dioxide Tricarbon Water

Four atoms

Acetylene Ammonia Cyanic acid Cyanoethynyl Cyclopropynylidyne Formaldehyde Fulminic acid HCCN Hydrogen
Hydrogen
peroxide Hydromagnesium isocyanide Isocyanic acid Isothiocyanic acid Ketenyl Methylene amidogen Methyl radical Propynylidyne Protonated carbon dioxide Protonated hydrogen cyanide Silicon tricarbide Thioformaldehyde Tricarbon
Tricarbon
monoxide Tricarbon
Tricarbon
sulfide Thiocyanic acid

Five atoms

Ammonium
Ammonium
ion Butadiynyl Carbodiimide Cyanamide Cyanoacetylene Cyanoformaldehyde Cyanomethyl Cyclopropenylidene Formic acid Isocyanoacetylene Ketene Methane Methoxy
Methoxy
radical Methylenimine Propadienylidene Protonated formaldehyde Protonated formaldehyde Silane Silicon-carbide cluster

Six atoms

Acetonitrile Cyanobutadiynyl radical E-Cyanomethanimine Cyclopropenone Diacetylene Ethylene Formamide HC4N Ketenimine Methanethiol Methanol Methyl isocyanide Pentynylidyne Propynal Protonated cyanoacetylene

Seven atoms

Acetaldehyde Acrylonitrile

Vinyl cyanide

Cyanodiacetylene Ethylene
Ethylene
oxide Hexatriynyl radical Methylacetylene Methylamine Methyl isocyanate Vinyl alcohol

Eight atoms

Acetic acid Aminoacetonitrile Cyanoallene Ethanimine Glycolaldehyde Heptatrienyl radical Hexapentaenylidene Methylcyanoacetylene Methyl formate Propenal

Nine atoms

Acetamide Cyanohexatriyne Cyanotriacetylene Dimethyl ether Ethanol Methyldiacetylene Octatetraynyl radical Propene Propionitrile

Ten atoms or more

Acetone Benzene Benzonitrile Buckminsterfullerene
Buckminsterfullerene
(C60 fullerene, buckyball) C70 fullerene Cyanodecapentayne Cyanopentaacetylene Cyanotetra-acetylene Ethylene
Ethylene
glycol Ethyl formate Methyl acetate Methyl-cyano-diacetylene Methyltriacetylene Propanal n-Propyl cyanide Pyrimidine

Deuterated molecules

Ammonia Ammonium
Ammonium
ion Formaldehyde Formyl radical Heavy water Hydrogen
Hydrogen
cyanide Hydrogen
Hydrogen
deuteride Hydrogen
Hydrogen
isocyanide Methylacetylene N2D+ Trihydrogen cation

Unconfirmed

Anthracene Dihydroxyacetone Ethyl methyl ether Glycine Graphene H2NCO+ Linear C5 Naphthalene
Naphthalene
cation Phosphine Pyrene Silylidine

Related

Abiogenesis Astrobiology Astrochemistry Atomic and molecular astrophysics Chemical formula Circumstellar envelope Cosmic dust Cosmic ray Cosmochemistry Diffuse interstellar band Earliest known life forms Extraterrestrial life Extraterrestrial liquid water Forbidden mechanism Helium hydride ion Homochirality Intergalactic dust Interplanetary medium Interstellar medium Photodissociation region Iron–sulfur world theory Kerogen Molecules in stars Nexus for Exoplanet System Science Organic compound Outer space PAH world hypothesis Panspermia Polycyclic aromatic hydrocarbon
Polycyclic aromatic hydrocarbon
(PAH) RNA world hypothesis Spectroscopy Tholin

Book:Chemistry Category:Astrochemistry Category:Molecules Portal:Astrobiology Portal:Astronomy Portal:Chemistry

v t e

Binary compounds of hydrogen

Alkali metal
Alkali metal
hydrides

LiH NaH KH RbH CsH

Lithium hydride, LiH ionic metal hydride

Beryllium hydride Left (gas phase): BeH2 covalent metal hydride Right: (BeH2)n (solid phase) polymeric metal hydride

Borane
Borane
and diborane Left: BH3 (special conditions), covalent metalloid hydride Right: B2H6 (standard conditions), dimeric metalloid hydride

Methane, CH4 covalent nonmetal hydride

Ammonia, NH3 covalent nonmetal hydride

Water, H2O covalent nonmetal hydride

Hydrogen
Hydrogen
fluoride, HF covalent nonmetal hydride

Alkaline earth hydrides

Monohydrides

BeH MgH CaH SrH BaH

BeH2 MgH2 CaH2 SrH2 BaH2

Group 13 hydrides

Boranes

BH3 B2H6 B2H2 B2H4

Alanes

AlH3 Al2H6

Gallanes

GaH3 Ga2H6

Indiganes

InH3 In2H6

Thallanes

TlH3 Tl2H6

B2H2 B2H4 B4H10 B5H9 B5H11 B6H10 B6H12 B10H14 B18H22

Group 14 hydrides

Linear alkanes

CH4 C2H6 C3H8 C4H10 C5H12 C6H14 C7H16 C8H18 C9H20 C10H22 more...

Linear alkenes

C2H4 C3H6 C4H8 C5H10 C6H12 C7H14 C8H16 C9H18 C10H20 more...

Linear alkynes

C2H2 C3H4 C4H6 C5H8 C6H10 C7H12 C8H14 C9H16 C10H18 more...

Silanes

SiH4 Si2H6 Si3H8 Si4H10 Si5H12 Si6H14 Si7H16 Si8H18 Si9H20 Si10H22 more...

Silenes

Si2H4

Silynes

Si2H2

Germanes

GeH4 Ge2H6 Ge3H8 Ge4H10 Ge5H12

Stannanes

SnH4 Sn2H6

Plumbanes

PbH4

CH CH2 CH3 C2H Cycloalkanes Cycloalkenes Annulenes Many more

Pnictogen hydrides

Azanes

NH3 N2H4 N3H5 N4H6 N5H7 N6H8 N7H9 N8H10 N9H11 N10H12 more...

Azenes

N2H2 N3H3 N4H4

Phosphanes

PH3 P2H4 P3H5 P4H6 P5H7 P6H8 P7H9 P8H10 P9H11 P10H12 more...

Phosphenes

P2H2 P3H3 P4H4

Arsanes

AsH3 As2H4

Stibanes

SbH3

Bismuthanes

BiH3

HN3 NH

radical

Hydrogen
Hydrogen
chalcogenides

Polyoxidanes

H2O H2O2 H2O3 H2O4 H2O5 H2O6 H2O7 H2O8 H2O9 H2O10 more...

Polysulfanes

H2S H2S2 H2S3 H2S4 H2S5 H2S6 H2S7 H2S8 H2S9 H2S10 more...

Selanes

H2Se H2Se2

Tellanes

H2Te H2Te2

Polanes

PoH2

HO HO2 HO3 H2O+–O– H2S=S (HS)2S+–S– HS HDO D2O T2O

Hydrogen
Hydrogen
halides

HF HCl HBr HI HAt

Transition metal hydrides

ScH2 YH2 YH3 TiH2 ZrH2 HfH2 VH VH2 NbH NbH2 TaH CrH CrH2 CrHx NiH PdHx (x < 1) FeH FeH2 FeH5 CuH ZnH2 CdH2 HgH2

Lanthanide hydrides

LaH2 LaH3 CeH2 CeH3 PrH2 PrH3 NdH2 NdH3 SmH2 SmH3 EuH2 GdH2 GdH3 TbH2 TbH3 DyH2 DyH3 HoH2 HoH3 ErH2 ErH3 TmH2 TmH3 YbH2 YbH2.5 LuH2 LuH3

Actinide hydrides

AcH2 ThH2 Th4H15 PaH3 UH3 NpH2 NpH3 PuH2 PuH3 AmH2 AmH3 CmH2

Authority control

LCCN: sh85063433 GND: 4180440-5 N

.