Homochirality
   HOME

TheInfoList



OR:

Homochirality is a uniformity of
chirality Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from ...
, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
, 19 of the 20 natural
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s are homochiral, being L-chiral (left-handed), while
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or do ...
s are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same
enantiomer In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical anti ...
(a right-handed or left-handed version of an atom or molecule), but some sources discourage this use of the term. It is unclear whether homochirality has a purpose; however, it appears to be a form of information storage. One suggestion is that it reduces
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
barriers in the formation of large organized molecules. It has been experimentally verified that amino acids form large aggregates in larger abundance from an enantiopure samples of the amino acid than from
racemic In chemistry, a racemic mixture, or racemate (), is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates. ...
(enantiomerically mixed) ones. It is not clear whether homochirality emerged before or after life, and many mechanisms for its origin have been proposed. Some of these models propose three distinct steps: mirror-symmetry breaking creates a minute enantiomeric imbalance,
chiral amplification In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical an ...
builds on this imbalance, and chiral transmission is the transfer of chirality from one set of molecules to another.


In biology

Amino acids are the building blocks of
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s and
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s while sugar-peptide chains are the backbone of RNA and DNA. In biological organisms, amino acids appear almost exclusively in the left-handed form (L-amino acids) and sugars in the right-handed form (R-sugars). Since the enzymes catalyze reactions, they enforce homochirality on a great variety of other chemicals, including
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
s, toxins, fragrances and food flavors.
Glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
is achiral, as are some other non-
proteinogenic Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino ...
amino acids that are either achiral (such as dimethylglycine) or of the D enantiomeric form. Biological organisms easily discriminate between molecules with different chiralities. This can affect physiological reactions such as smell and taste.
Carvone Carvone is a member of a family of chemicals called terpenoids. Carvone is found naturally in many essential oils, but is most abundant in the oils from seeds of caraway (''Carum carvi''), spearmint (''Mentha spicata''), and dill. Uses Both c ...
, a terpenoid found in
essential oil An essential oil is a concentrated hydrophobic liquid containing volatile (easily evaporated at normal temperatures) chemical compounds from plants. Essential oils are also known as volatile oils, ethereal oils, aetheroleum, or simply as the o ...
s, smells like mint in its L-form and caraway in its R-form.
Limonene Limonene is a colorless liquid aliphatic hydrocarbon classified as a cyclic monoterpene, and is the major component in the oil of citrus fruit peels. The -isomer, occurring more commonly in nature as the fragrance of oranges, is a flavoring a ...
tastes like citrics when right-handed and pine when left-handed. Homochirality also affects the response to drugs.
Thalidomide Thalidomide, sold under the brand names Contergan and Thalomid among others, is a medication used to treat a number of cancers (including multiple myeloma), graft-versus-host disease, and a number of skin conditions including complications o ...
, in its left-handed form, cures
morning sickness Morning sickness, also called nausea and vomiting of pregnancy (NVP), is a symptom of pregnancy that involves nausea or vomiting. Despite the name, nausea or vomiting can occur at any time during the day. Typically the symptoms occur between th ...
; in its right-handed form, it causes birth defects. Unfortunately, even if a pure left-handed version is administered, some of it can convert to the right-handed form in the patient. Many drugs are available as both a
racemic mixture In chemistry, a racemic mixture, or racemate (), is one that has equal amounts of left- and right-handed enantiomers of a chiral molecule or salt. Racemic mixtures are rare in nature, but many compounds are produced industrially as racemates. ...
(equal amounts of both chiralities) and an enantiopure drug (only one chirality). Depending on the manufacturing process, enantiopure forms can be more expensive to produce than stereochemical mixtures. Chiral preferences can also be found at a macroscopic level. Snail shells can be right-turning or left-turning helices, but one form or the other is strongly preferred in a given species. In the edible snail ''
Helix pomatia ''Helix pomatia'', common names the Roman snail, Burgundy snail, or escargot, is a species of large, edible, air-breathing land snail, a pulmonate gastropod terrestrial mollusc in the family Helicidae.MolluscaBase eds. (2021). MolluscaBase. ...
'', only one out of 20,000 is left-helical. The coiling of plants can have a preferred chirality and even the chewing motion of cows has a 10% excess in one direction.


Origins


Symmetry breaking

Theories for the origin of homochirality in the molecules of life can be classified as deterministic or based on chance depending on their proposed mechanism. If there is a relationship between cause and effect — that is, a specific chiral field or influence causing the mirror symmetry breaking — the theory is classified as deterministic; otherwise it is classified as a theory based on chance (in the sense of randomness) mechanisms. Another classification for the different theories of the origin of biological homochirality could be made depending on whether life emerged before the enantiodiscrimination step (biotic theories) or afterwards (abiotic theories). Biotic theories claim that homochirality is simply a result of the natural autoamplification process of life—that either the formation of life as preferring one chirality or the other was a chance rare event which happened to occur with the chiralities we observe, or that all chiralities of life emerged rapidly but due to catastrophic events and strong competition, the other unobserved chiral preferences were wiped out by the preponderance and metabolic, enantiomeric enrichment from the 'winning' chirality choices. If this was the case, remains of the extinct chirality sign should be found. Since this is not the case, nowadays biotic theories are no longer supported. The emergence of chirality consensus as a natural autoamplification process has also been associated with the
2nd law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
.


Deterministic theories

Deterministic theories can be divided into two subgroups: if the initial chiral influence took place in a specific space or time location (averaging zero over large enough areas of observation or periods of time), the theory is classified as local deterministic; if the chiral influence is permanent at the time the chiral selection occurred, then it is classified as universal deterministic. The classification groups for local determinist theories and theories based on chance mechanisms can overlap. Even if an external chiral influence produced the initial chiral imbalance in a deterministic way, the outcome sign could be random since the external chiral influence has its enantiomeric counterpart elsewhere. In deterministic theories, the enantiomeric imbalance is created due to an external chiral field or influence, and the ultimate sign imprinted in biomolecules will be due to it. Deterministic mechanisms for the production of non-racemic mixtures from racemic starting materials include: asymmetric physical laws, such as the electroweak interaction (via cosmic rays) or asymmetric environments, such as those caused by
circularly polarized In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to th ...
light, quartz crystals, or the Earth's rotation, β-Radiolysis or the magnetochiral effect. The most accepted universal deterministic theory is the electroweak interaction. Once established, chirality would be selected for. One supposition is that the discovery of an enantiomeric imbalance in molecules in the Murchison meteorite supports an extraterrestrial origin of homochirality: there is evidence for the existence of
circularly polarized light In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to t ...
originating from
Mie scattering The Mie solution to Maxwell's equations (also known as the Lorenz–Mie solution, the Lorenz–Mie–Debye solution or Mie scattering) describes the scattering of an electromagnetic plane wave by a homogeneous sphere. The solution takes the ...
on aligned interstellar dust particles which may trigger the formation of an enantiomeric excess within chiral material in space. Interstellar and near-stellar magnetic fields can align dust particles in this fashion. Another speculation (the Vester-Ulbricht hypothesis) suggests that fundamental chirality of physical processes such as that of the beta decay (see
Parity violation In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point ref ...
) leads to slightly different half-lives of biologically relevant molecules.


Chance theories

Chance theories are based on the assumption that "''Absolute asymmetric synthesis, i.e., the formation of enantiomerically enriched products from achiral precursors without the intervention of chiral chemical reagents or catalysts, is in practice unavoidable on statistical grounds alone''". Consider the racemic state as a macroscopic property described by a binomial distribution; the experiment of tossing a coin, where the two possible outcomes are the two enantiomers is a good analogy. The discrete probability distribution P_p(n, N) of obtaining n successes out of N Bernoulli trials, where the result of each Bernoulli trial occurs with probability p and the opposite occurs with probability q=(1-p) is given by: P_p(n, N)=\binomp^n(1-p)^ . The discrete probability distribution P(N/2, N) of having exactly N/2 molecules of one chirality and N/2 of the other, is given by: P_(N/2, N)=\binom\left ( \frac \right )^ \left ( \frac \right )^\approx\sqrt . As in the experiment of tossing a coin, in this case, we assume both events (L or D ) to be equiprobable, p = q = 1/2 . The probability of having exactly the same amount of both enantiomers is inversely proportional to the square root of the total number of molecules N . For one mol of a racemic compound, N = N_A \approx 6.022 \cdot 10^ molecules, this probability becomes P_(N_A/2, N_A) \approx 10^ . The probability of finding the racemic state is so small that we can consider it negligible. In this scenario, there is a need to amplify the initial stochastic enantiomeric excess through any efficient mechanism of amplification. The most likely path for this amplification step is by asymmetric autocatalysis. An autocatalytic chemical reaction is that in which the reaction product is itself a reactive, in other words, a chemical reaction is autocatalytic if the reaction product is itself the catalyst of the reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalysing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other.


Amplification


Theory

In 1953,
Charles Frank Charles Reser Frank (born April 17, 1947) is an American actor noted for playing Bret Maverick's cousin Ben Maverick in the 1978 TV-movie ''The New Maverick'' with James Garner and Jack Kelly, and in the short-lived 1979 television series '' ...
proposed a model to demonstrate that homochirality is a consequence of autocatalysis. In his model the L and D enantiomers of a chiral molecule are autocatalytically produced from an achiral molecule A :\begin A + L \xrightarrow 2L,\\ A + D \xrightarrow 2D, \end while suppressing each other through a reaction that he called ''mutual antagonism'' \begin L + D \xrightarrow \varnothing.\\ \end In this model the racemic state is unstable in the sense that the slightest enantiomeric excess will be amplified to a completely homochiral state. This can be shown by computing the reaction rates from the
law of mass action In chemistry, the law of mass action is the proposition that the rate of the chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. It explains and predicts behaviors of solutions in dy ...
: :\begin \frac &= k_a ce A ce L- k_d \ce\\ \frac &= k_a ce A ce D- k_d \ce, \end where k_a is the rate constant for the autocatalytic reactions, k_d is the rate constant for mutual antagonism reaction, and the concentration of A is kept constant for simplicity. The analytical solutions for are found to be = 0/ 0\,e^ . The ratio /math> increases at a more than exponential rate if ( 0- 0) is positive (and vice versa). Every starting conditions different to 0 = 0 lead to one of the asymptotes = 0 or = 0. Thus the equality of 0 and 0 and so of /math> and /math> represents a condition of unstable equilibrium, this result depending on the presence of the term representing mutual antagonism. By defining the enantiomeric excess ee as :ee = \frac, we can compute the rate of change of enantiomeric excess using
chain rule In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , ...
from the rate of change of the concentrations of enantiomers L and D. : \frac = \left(\frac\right)ee. Linear stability analysis of this equation shows that the racemic state ee = 0 is unstable. Starting from
almost everywhere In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
in the concentration space, the system evolves to a homochiral state. It is generally understood that autocatalysis alone does not yield to homochirality, and the presence of the mutually antagonistic relationship between the two enantiomers is necessary for the instability of the racemic mixture. However, recent studies show that homochirality could be achieved from autocatalysis in the absence of the mutually antagonistic relationship, but the underlying mechanism for symmetry-breaking is different.


Experiments

There are several laboratory experiments that demonstrate how a small amount of one enantiomer at the start of a reaction can lead to a large excess of a single enantiomer as the product. For example, the Soai reaction is autocatalytic. If the reaction is started with some of one of the product enantiomers already present, the product acts as an
enantioselective In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical an ...
catalyst for production of more of that same enantiomer. The initial presence of just 0.2 equivalent one enantiomer can lead to up to 93% enantiomeric excess of the product. Another study concerns the
proline Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group but is rather a secondary amine. The secondary amine nitrogen is in the p ...
catalyzed aminoxylation of propionaldehyde by nitrosobenzene. In this system, a small enantiomeric excess of catalyst leads to a large enantiomeric excess of product.
Serine octamer cluster The Serine octamer cluster in physical chemistry is an unusually stable cluster consisting of eight serine molecules (Ser) implicated in the origin of homochirality. This cluster was first discovered in mass spectrometry experiments. Electrospra ...
s are also contenders. These clusters of 8 serine molecules appear in mass spectrometry with an unusual homochiral preference, however there is no evidence that such clusters exist under non-ionizing conditions and amino acid phase behavior is far more prebiotically relevant. The recent observation that partial sublimation of a 10% enantioenriched sample of
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
results in up to 82% enrichment in the sublimate shows that enantioenrichment of amino acids could occur in space. Partial sublimation processes can take place on the surface of meteors where large variations in temperature exist. This finding may have consequences for the development of the
Mars Organic Detector ExoMars (Exobiology on Mars) is an astrobiology programme of the European Space Agency (ESA). The goals of ExoMars are to search for signs of past life on Mars, investigate how the Martian water and geochemical environment varies, investigate ...
scheduled for launch in 2013 which aims to recover trace amounts of amino acids from the Mars surface exactly by a sublimation technique. A high asymmetric amplification of the enantiomeric excess of sugars are also present in the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
catalyzed asymmetric formation of
carbohydrates In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or m ...
One classic study involves an experiment that takes place in the laboratory. When sodium chlorate is allowed to
crystallize Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposi ...
from water and the collected crystals examined in a
polarimeter A polarimeter is a scientific instrument used to measure the angle of rotation caused by passing polarized light through an optically active substance.L form or the D form. In an ordinary experiment the amount of L crystals collected equals the amount of D crystals (corrected for statistical effects). However, when the sodium chlorate solution is stirred during the crystallization process the crystals are either exclusively L or exclusively D. In 32 consecutive crystallization experiments 14 experiments deliver D-crystals and 18 others L-crystals. The explanation for this symmetry breaking is unclear but is related to autocatalysis taking place in the
nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
process. In a related experiment, a crystal suspension of a racemic
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
derivative continuously stirred, results in a 100% crystal phase of one of the enantiomers because the enantiomeric pair is able to equilibrate in solution (compare with
dynamic kinetic resolution In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resul ...
).


Transmission

Once a significant enantiomeric enrichment has been produced in a system, the transference of chirality through the entire system is customary. This last step is known as the chiral transmission step. Many strategies in
asymmetric synthesis Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecu ...
are built on chiral transmission. Especially important is the so-called
organocatalysis In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon, hydrogen, sulfur and other nonmetal elements found in organic co ...
of organic reactions by proline for example in Mannich reactions. Some proposed models for the transmission of chiral asymmetry are polymerization, epimerization or copolymerization.


Optical resolution in racemic amino acids

There exists no theory elucidating correlations among L-amino acids. If one takes, for example,
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
, which has a small
methyl In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in ...
group, and
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula . It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amin ...
, which has a larger
benzyl In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure . Benzyl features a benzene ring () attached to a methylene group () group. Nomenclature In IUPAC nomenclature, the prefix benzyl refers to a substi ...
group, a simple question is in what aspect, L-alanine resembles L-phenylalanine more than D-phenylalanine, and what kind of mechanism causes the selection of all L-amino acids. Because it might be possible that alanine was L and phenylalanine was D. It was reported in 2004 that excess racemic D,L-asparagine (Asn), which spontaneously forms crystals of either isomer during recrystallization, induces asymmetric resolution of a co-existing racemic amino acid such as
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
(Arg),
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
(Asp),
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
(Gln),
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the ...
(His),
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
(Leu),
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ...
(Met),
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula . It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amin ...
(Phe),
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − for ...
(Ser),
valine Valine (symbol Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- carboxylic acid group (which is in the deprotona ...
(Val),
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the G ...
(Tyr), and
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
(Trp). The enantiomeric excess of these amino acids was correlated almost linearly with that of the inducer, i.e., Asn. When recrystallizations from a mixture of 12 D,L-amino acids (Ala, Asp, Arg, Glu, Gln, His, Leu, Met, Ser, Val, Phe, and Tyr) and excess D,L-Asn were made, all amino acids with the same configuration with Asn were preferentially co-crystallized. It was incidental whether the enrichment took place in L- or D-Asn, however, once the selection was made, the co-existing amino acid with the same configuration at the α-carbon was preferentially involved because of thermodynamic stability in the crystal formation. The maximal ee was reported to be 100%. Based on these results, it is proposed that a mixture of racemic amino acids causes spontaneous and effective optical resolution, even if asymmetric synthesis of a single amino acid does not occur without an aid of an optically active molecule. This is the first study elucidating reasonably the formation of chirality from racemic amino acids with experimental evidences.


History of term

This term was introduced by
Kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and ...
in 1904, the year that he published his Baltimore Lecture of 1884. Kelvin used the term homochirality as a relationship between two molecules, i.e. two molecules are homochiral if they have the same chirality. Recently, however, homochiral has been used in the same sense as
enantiomer In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical anti ...
ically pure. This is permitted in some journals (but not encouraged),However, the message can be confusing. In , the entry for ''Enantiomerically Pure/Enantiopure'' says "Use of homochiral as a synonym is strongly discouraged"; but the entry for ''Homochiral'' says "See ''enantiomerically pure/enantiopure''." its meaning changing into the preference of a process or system for a single optical isomer in a pair of isomers in these journals.


See also

* Chiral life concept - of artificially synthesizing chiral-mirror version of life * CIP system *
Stereochemistry Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereoi ...
*
Pfeiffer Effect The Pfeiffer effect is an optical phenomenon whereby the presence of an optically active compound influences the optical rotation of a racemic mixture of a second compound. Racemic mixtures do not rotate plane polarized light, but the equilibrium ...
* Unsolved problems in chemistry


References


Further reading

* * * * * * * * * *


External links


Observations Support Homochirality Theory
Photonics TechnologyWorld November 1998.
Origins of Homochirality
Conference in Nordita Stockholm, February 2008. {{#related:Frederick Charles Frank Biochemistry Origin of life Stereochemistry Pharmacology