History of RNA biology
   HOME

TheInfoList



OR:

Numerous key discoveries in
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
have emerged from studies of RNA (ribonucleic acid), including seminal work in the fields of
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
,
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar work ...
,
microbiology Microbiology () is the scientific study of microorganisms, those being unicellular (single cell), multicellular (cell colony), or acellular (lacking cells). Microbiology encompasses numerous sub-disciplines including virology, bacteriology, ...
,
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
,
molecular evolution Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genet ...
and
structural biology Structural biology is a field that is many centuries old which, and as defined by the Journal of Structural Biology, deals with structural analysis of living material (formed, composed of, and/or maintained and refined by living cells) at every le ...
. As of 2010, 30 scientists have been awarded
Nobel Prize The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfr ...
s for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article. For related information, see the articles on
History of Molecular Biology The history of molecular biology begins in the 1930s with the convergence of various, previously distinct biological and physical disciplines: biochemistry, genetics, microbiology, virology and physics. With the hope of understanding life at it ...
and History of Genetics. For background information, see the articles on RNA and
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main ...
.


1930–1950


RNA and DNA have distinct chemical properties

When first studied in the early 1900s, the chemical and biological differences between RNA and DNA were not apparent, and they were named after the materials from which they were isolated; RNA was initially known as "
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
nucleic acid" and DNA was "
thymus The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or '' T cells'' mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders ...
nucleic acid". Using diagnostic chemical tests,
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
chemists showed that the two nucleic acids contained different
sugars Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
, whereupon the common name for RNA became "ribose nucleic acid". Other early biochemical studies showed that RNA was readily broken down at high pH, while DNA was stable (although denatured) in
alkali In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a ...
. Nucleoside composition analysis showed first that RNA contained similar
nucleobase Nucleobases, also known as ''nitrogenous bases'' or often simply ''bases'', are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basi ...
s to DNA, with
uracil Uracil () (symbol U or Ura) is one of the four nucleobases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced b ...
instead of
thymine Thymine () ( symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidin ...
, and that RNA contained a number of minor nucleobase components, e.g. small amounts of pseudouridine and dimethylguanine.


Localization in cell and morphogenetic role

In 1933, while studying virgin
sea urchin Sea urchins () are spiny, globular echinoderms in the class Echinoidea. About 950 species of sea urchin live on the seabed of every ocean and inhabit every depth zone from the intertidal seashore down to . The spherical, hard shells (tests) o ...
eggs,
Jean Brachet Jean Louis Auguste Brachet (19 March 1909 – 10 August 1988) was a Belgian biochemist who made a key contribution in understanding the role of RNA. Life Brachet was born in Etterbeek near Brussels in Belgium, the son of Albert Brache ...
suggested that DNA is found in
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
and that RNA is present exclusively in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
. At the time, "yeast nucleic acid" (RNA) was thought to occur only in plants, while "thymus nucleic acid" (DNA) only in animals. The latter was thought to be a tetramer, with the function of buffering cellular pH. During the 1930s,
Joachim Hämmerling Dr. Joachim Hämmerling (9 March 1901 - 5 August 1980) was a pioneering Danish-German biologist funded by Nazi Germany who determined that the nucleus of a cell controls the development of organisms. His experimentation with the green algae ''A ...
conducted experiments with ''
Acetabularia ''Acetabularia'' is a genus of green algae in the family Polyphysaceae, Typically found in subtropical waters, ''Acetabularia'' is a single-celled organism, but gigantic in size and complex in form, making it an excellent model organism for stud ...
'' in which he began to distinguish the contributions of the nucleus and the cytoplasm substances (later discovered to be DNA and mRNA, respectively) to cell morphogenesis and development.


1951–1965


Messenger RNA (mRNA) carries genetic information that directs protein synthesis

The concept of messenger RNA emerged during the late 1950s, and is associated with Crick's description of his "Central Dogma of Molecular Biology", which asserted that DNA led to the formation of RNA, which in turn led to the synthesis of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s. During the early 1960s, sophisticated genetic analysis of mutations in the
lac operon The ''lactose'' operon (''lac'' operon) is an operon required for the transport and metabolism of lactose in ''E. coli'' and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the ''lac'' operon allow ...
of E. coli and in the rII locus of bacteriophage T4 were instrumental in defining the nature of both
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
and the
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
. The short-lived nature of bacterial RNAs, together with the highly complex nature of the cellular mRNA population, made the biochemical isolation of mRNA very challenging. This problem was overcome in the 1960s by the use of reticulocytes in vertebrates, which produce large quantities of mRNA that are highly enriched in RNA encoding alpha- and beta-globin (the two major protein chains of
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythroc ...
). The first direct experimental evidence for the existence of mRNA was provided by such a hemoglobin synthesizing system.


Ribosomes make proteins

In the 1950s, results of labeling experiments in rat liver showed that radioactive
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s were found to be associated with "microsomes" (later redefined as ribosomes) very rapidly after administration, and before they became widely incorporated into cellular proteins. Ribosomes were first visualized using
electron microscopy An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
, and their ribonucleoprotein components were identified by biophysical methods, chiefly sedimentation analysis within
ultracentrifuges An ultracentrifuge is a centrifuge optimized for spinning a rotor at very high speeds, capable of generating acceleration as high as (approx. ). There are two kinds of ultracentrifuges, the preparative and the analytical ultracentrifuge. Both cla ...
capable of generating very high accelerations (equivalent to hundreds of thousands times gravity).
Polysomes A polyribosome (or polysome or ergosome) is a group of ribosomes bound to an mRNA molecule like “beads” on a “thread”. It consists of a complex of an mRNA molecule and two or more ribosomes that act to translate mRNA instructions into pol ...
(multiple ribosomes moving along a single mRNA molecule) were identified in the early 1960s, and their study led to an understanding of how ribosomes proceed to read the mRNA in a 5′ to 3′ direction, processively generating proteins as they do so.


Transfer RNA (tRNA) is the physical link between RNA and protein

Biochemical fractionation experiments showed that radioactive amino acids were rapidly incorporated into small RNA molecules that remained soluble under conditions where larger RNA-containing particles would precipitate. These molecules were termed soluble (sRNA) and were later renamed transfer RNA (
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
). Subsequent studies showed that (i) every cell has multiple species of tRNA, each of which is associated with a single specific amino acid, (ii) that there are a matching set of
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s responsible for linking tRNAs with the correct amino acids, and (iii) that tRNA
anticodon Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
sequences form a specific decoding interaction with mRNA
codons The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
.


The genetic code is solved

The
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
consists of the translation of particular nucleotide sequences in mRNA to specific amino acid sequences in
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
(polypeptides). The ability to work out the genetic code emerged from the convergence of three different areas of study--(i) new methods to generate synthetic RNA molecules of defined composition to serve as artificial mRNAs, (ii) development of ''in vitro'' translation systems that could be used to translate the synthetic mRNAs into protein, and (iii) experimental and theoretical genetic work which established that the code was written in three letter "words" (
codons The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
). Today, our understanding of the genetic code permits the prediction of the amino sequence of the protein products of the tens of thousands of genes whose sequences are being determined in
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
studies.


RNA polymerase is purified

The biochemical purification and characterization of
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens th ...
from the bacterium
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Esc ...
enabled the understanding of the mechanisms through which RNA polymerase initiates and terminates transcription, and how those processes are regulated to regulate
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
(i.e. turn genes on and off). Following the isolation of E. coli RNA polymerase, the three RNA polymerases of the eukaryotic nucleus were identified, as well as those associated with viruses and organelles. Studies of transcription also led to the identification of many protein factors that influence transcription, including repressors, activators and enhancers. The availability of purified preparations of RNA polymerase permitted investigators to develop a wide range of novel methods for studying RNA in the test tube, and led directly to many of the subsequent key discoveries in RNA biology.


1966–1975


First complete nucleotide sequence of a biological nucleic acid molecule

Although determining the sequence of proteins was becoming somewhat routine, methods for sequencing of nucleic acids were not available until the mid-1960s. In this seminal work, a specific tRNA was purified in substantial quantities, and then sliced into overlapping fragments using a variety of ribonucleases. Analysis of the detailed nucleotide composition of each fragment provided the information necessary to deduce the sequence of the tRNA. Today, the sequence analysis of much larger nucleic acid molecules is highly automated and enormously faster.


Evolutionary variation of homologous RNA sequences reveals folding patterns

Additional tRNA molecules were purified and sequenced. The first comparative sequence analysis was done and revealed that the sequences varied through evolution in such a way that all of the tRNAs could fold into very similar secondary structures (two-dimensional structures) and had identical sequences at numerous positions (e.g. CCA at the 3′ end). The radial four-arm structure of tRNA molecules is termed the 'cloverleaf structure', and results from the evolution of sequences with common ancestry and common biological function. Since the discovery of the tRNA cloverleaf, comparative analysis of numerous other homologous RNA molecules has led to the identification of common sequences and folding patterns.


First complete genomic nucleotide sequence

The 3569 nucleotide sequence of all of the genes of the RNA
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bac ...
MS2 was determined by a large team of researchers over several years, and was reported in a series of scientific papers. These results enabled the analysis of the first complete genome, albeit an extremely tiny one by modern standards. Several surprising features were identified, including genes that partially overlap one another and the first clues that different organisms might have slightly different codon usage patterns.


Reverse transcriptase can copy RNA into DNA

Retroviruses were shown to have a single-stranded RNA genome and to replicate via a DNA intermediate, the reverse of the usual DNA-to-RNA transcription pathway. They encode a RNA-dependent DNA polymerase (
reverse transcriptase A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genom ...
) that is essential for this process. Some retroviruses can cause diseases, including several that are associated with cancer, and HIV-1 which causes AIDS. Reverse transcriptase has been widely used as an experimental tool for the analysis of RNA molecules in the laboratory, in particular the conversion of RNA molecules into DNA prior to
molecular cloning Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word '' cloning'' refers to the fact that the meth ...
and/or
polymerase chain reaction The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) ...
(PCR).


RNA replicons evolve rapidly

Biochemical and genetic analyses showed that the enzyme systems that replicate viral RNA molecules (reverse transcriptases and RNA replicases) lack molecular proofreading (3′ to 5′ exonuclease) activity, and that RNA sequences do not benefit from extensive repair systems analogous to those that exist for maintaining and repairing DNA sequences. Consequently, RNA genomes appear to be subject to significantly higher mutation rates than DNA genomes. For example, mutations in HIV-1 that lead to the emergence of viral mutants that are insensitive to antiviral drugs are common, and constitute a major clinical challenge.


Ribosomal RNA (rRNA) sequences provide a record of the evolutionary history of all life forms

Analysis of
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from riboso ...
sequences from a large number of organisms demonstrated that all extant forms of life on Earth share common structural and sequence features of the ribosomal RNA, reflecting a
common ancestry Common descent is a concept in evolutionary biology applicable when one species is the ancestor of two or more species later in time. All living beings are in fact descendants of a unique ancestor commonly referred to as the last universal com ...
. Mapping the similarities and differences among rRNA molecules from different sources provides clear and quantitative information about the
phylogenetic In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups ...
(i.e. evolutionary) relationships among organisms. Analysis of rRNA molecules led to the identification of a third major kingdom of organisms, the
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
, in addition to the
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
and
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
.


Non-encoded nucleotides are added to the ends of RNA molecules

Molecular analysis of mRNA molecules showed that, following transcription, mRNAs have non-DNA-encoded nucleotides added to both their 5′ and 3′ ends (guanosine caps and poly-A, respectively). Enzymes were also identified that add and maintain the universal CCA sequence on the 3′ end of tRNA molecules. These events are among the first discovered examples of
RNA processing Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, f ...
, a complex series of reactions that are needed to convert RNA primary transcripts into biologically active RNA molecules.


1976–1985


Small RNA molecules are abundant in the eukaryotic nucleus

Small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcribe ...
molecules (snRNAs) were identified in the eukaryotic
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
using immunological studies with autoimmune
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of ...
, which bind to
small nuclear ribonucleoprotein snRNPs (pronounced "snurps"), or small nuclear ribonucleoproteins, are RNA-protein complexes that combine with unmodified pre-mRNA and various other proteins to form a spliceosome, a large RNA-protein molecular complex upon which RNA splicing, spli ...
complexes (snRNPs; complexes of the snRNA and protein). Subsequent biochemical, genetic, and phylogenetic studies established that many of these molecules play key roles in essential
RNA processing Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, f ...
reactions within the nucleus and
nucleolus The nucleolus (, plural: nucleoli ) is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis, which is the synthesis of ribosomes. The nucleolus also participates in the formation of sign ...
, including
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
,
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euk ...
, and the maturation of
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from riboso ...
s.


RNA molecules require a specific, complex three-dimensional structure for activity

The detailed three-dimensional structure of
tRNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ...
molecules was determined using
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
, and revealed highly complex, compact three dimensional structures consisting of tertiary interactions laid upon the basic cloverleaf secondary structure. Key features of tRNA tertiary structure include the coaxial stacking of adjacent helices and non-Watson-Crick interactions among nucleotides within the apical loops. Additional crystallographic studies showed that a wide range of RNA molecules (including
ribozymes Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demons ...
,
riboswitches In molecular biology, a riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. Thus, an mRNA that contains a riboswitch is directly inv ...
and
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from riboso ...
) also fold into specific structures containing a variety of 3D structural motifs. The ability of RNA molecules to adopt specific tertiary structures is essential for their biological activity, and results from the single-stranded nature of RNA. In many ways, RNA folding is more highly analogous to the folding of proteins rather than to the highly repetitive folded structure of the DNA double helix.


Genes are commonly interrupted by introns that must be removed by RNA splicing

Analysis of mature eukaryotic
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
molecules showed that they are often much smaller than the DNA sequences that encode them. The genes were shown to be discontinuous, composed of sequences that are not present in the final mature RNA (
introns An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
), located between sequences that are retained in the mature RNA (
exons An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding seque ...
). Introns were shown to be removed after transcription through a process termed
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
. Splicing of RNA transcripts requires a highly precise and coordinated sequence of molecular events, consisting of (a) definition of boundaries between exons and introns, (b) RNA strand cleavage at exactly those sites, and (c) covalent linking (ligation) of the RNA exons in the correct order. The discovery of discontinuous genes and RNA splicing was entirely unexpected by the community of RNA biologists, and stands as one of the most shocking findings in molecular biology research.


Alternative pre-mRNA splicing generates multiple proteins from a single gene

The great majority of protein-coding genes encoded within the nucleus of
metazoan Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
cells contain multiple
introns An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
. In many cases, these introns were shown to be processed in more than one pattern, thus generating a family of related mRNAs that differ, for example, by the inclusion or exclusion of particular exons. The result of
alternative splicing Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be i ...
is that a single
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
can encode a number of different protein
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some iso ...
that can exhibit a variety of (usually related) biological functions. Indeed, most of the proteins encoded by the human genome are generated by alternative splicing.


Discovery of catalytic RNA (ribozymes)

An experimental system was developed in which an intron-containing rRNA precursor from the nucleus of the ciliated protozoan
Tetrahymena ''Tetrahymena'', a unicellular eukaryote, is a genus of free-living ciliates. The genus Tetrahymena is the most widely studied member of its phylum. It can produce, store and react with different types of hormones. Tetrahymena cells can recog ...
could be spliced ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
''. Subsequent biochemical analysis shows that this group I intron was self-splicing; that is, the precursor RNA is capable of carrying out the complete splicing reaction in the absence of proteins. In separate work, the RNA component of the bacterial enzyme
ribonuclease P Ribonuclease P (, ''RNase P'') is a type of ribonuclease which cleaves RNA. RNase P is unique from other RNases in that it is a ribozyme – a ribonucleic acid that acts as a catalyst in the same way that a protein-based enzyme would. Its ...
(a
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating int ...
complex) was shown to catalyze its tRNA-processing reaction in the absence of proteins. These experiments represented landmarks in RNA biology, since they revealed that RNA could play an active role in cellular processes, by catalyzing specific biochemical reactions. Before these discoveries, it was believed that biological catalysis was solely the realm of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
.


RNA was likely critical for prebiotic evolution

The discovery of catalytic RNA (
ribozymes Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demons ...
) showed that RNA could both encode genetic information (like DNA) and catalyze specific biochemical reactions (like protein
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
). This realization led to the
RNA World Hypothesis The RNA world is a hypothetical stage in the evolutionary history of life on Earth, in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existenc ...
, a proposal that RNA may have played a critical role in prebiotic evolution at a time before the molecules with more specialized functions (DNA and proteins) came to dominate biological information coding and catalysis. Although it is not possible for us to know the course of prebiotic evolution with any certainty, the presence of functional RNA molecules with common ancestry in all modern-day life forms is a strong argument that RNA was widely present at the time of the
last common ancestor In biology and genetic genealogy, the most recent common ancestor (MRCA), also known as the last common ancestor (LCA) or concestor, of a set of organisms is the most recent individual from which all the organisms of the set are descended. The ...
.


Introns can be mobile genetic elements

Some self-splicing introns can spread through a population of organisms by "homing", inserting copies of themselves into genes at sites that previously lacked an intron. Because they are self-splicing (that is, they remove themselves at the RNA level from genes into which they have inserted), these sequences represent
transposons A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Tran ...
that are genetically silent, i.e. they do not interfere with the expression of the gene into which they become inserted. These introns can be regarded as examples of selfish DNA. Some mobile introns encode homing endonucleases, enzymes that initiate the homing process by specifically cleaving double-stranded DNA at or near the intron-insertion site of alleles lacking an intron. Mobile introns are frequently members of either the
group I Group 1 may refer to: * Alkali metal, a chemical element classification for Alkali metal * Group 1 (racing), a historic (until 1981) classification for Touring car racing, applied to standard touring cars. Comparable to modern FIA Group N * Group On ...
or group II families of self-splicing introns.


Spliceosomes mediate nuclear pre-mRNA splicing

Introns are removed from nuclear pre-mRNAs by spliceosomes, large
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating int ...
complexes made up of snRNA and protein molecules whose composition and molecular interactions change during the course of the
RNA splicing RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
reactions. Spliceosomes assemble on and around splice sites (the boundaries between introns and exons in the unspliced pre-mRNA) in mRNA precursors and use RNA-RNA interactions to identify critical nucleotide sequences and, probably, to catalyze the splicing reactions. Nuclear pre-mRNA introns and spliceosome-associated snRNAs show similar structural features to self-splicing group II introns. In addition, the splicing pathway of nuclear pre-mRNA introns and group II introns shares a similar reaction pathway. These similarities have led to the hypothesis that these molecules may share a common ancestor.


1986–2000


RNA sequences can be edited within cells

Messenger RNA precursors from a wide range of organisms can be
edited Editing is the process of selecting and preparing written, photographic, visual, audible, or cinematic material used by a person or an entity to convey a message or information. The editing process can involve correction, condensation, org ...
before being translated into protein. In this process, non-encoded nucleotides may be inserted into specific sites in the RNA, and encoded nucleotides may be removed or replaced. RNA editing was first discovered within the mitochondria of
kinetoplastid Kinetoplastida (or Kinetoplastea, as a class) is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of an organelle with a large massed DNA called kinetoplast (hence the name). The organisms are ...
protozoans, where it has been shown to be extensive. For example, some protein-coding genes encode fewer than 50% of the nucleotides found within the mature, translated mRNA. Other RNA editing events are found in mammals, plants, bacteria and viruses. These latter editing events involve fewer nucleotide modifications, insertions and deletions than the events within
kinetoplast A kinetoplast is a network of circular DNA (called kDNA) inside a large mitochondrion that contains many copies of the mitochondrial genome. The most common kinetoplast structure is a disk, but they have been observed in other arrangements. Kineto ...
DNA, but still have high biological significance for gene expression and its regulation.


Telomerase uses a built-in RNA template to maintain chromosome ends

Telomerase is an enzyme that is present in all eukaryotic nuclei which serves to maintain the ends of the linear DNA in the linear
chromosomes A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
of the eukaryotic nucleus, through the addition of terminal sequences that are lost in each round of DNA replication. Before telomerase was identified, its activity was predicted on the basis of a molecular understanding of DNA replication, which indicated that the DNA polymerases known at that time could not replicate the 3′ end of a linear chromosome, due to the absence of a template strand. Telomerase was shown to be a
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating int ...
enzyme that contains an RNA component that serves as a
template strand Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called ...
, and a protein component that has
reverse transcriptase A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genom ...
activity and adds nucleotides to the chromosome ends using the internal RNA template.


Ribosomal RNA catalyzes peptide bond formation

For years, scientists had worked to identify which protein(s) within the
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to fo ...
were responsible for
peptidyl transferase The peptidyl transferase is an aminoacyltransferase () as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The subs ...
function during
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
, because the covalent linking of amino acids represents one of the most central chemical reactions in all of biology. Careful biochemical studies showed that extensively-deproteinized large ribosomal subunits could still catalyze peptide bond formation, thereby implying that the sought-after activity might lie within ribosomal RNA rather than ribosomal proteins. Structural biologists, using
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
, localized the peptidyl transferase center of the ribosome to a highly- conserved region of the large subunit
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from riboso ...
(rRNA) that is located at the place within the ribosome where the amino-acid-bearing ends of tRNA bind, and where no proteins are present. These studies led to the conclusion that the
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to fo ...
is a
ribozyme Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demons ...
. The rRNA sequences that make up the ribosomal
active site In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate ( binding site) ...
represent some of the most highly conserved sequences in the biological world. Together, these observations indicate that peptide bond formation catalyzed by RNA was a feature of the
last common ancestor In biology and genetic genealogy, the most recent common ancestor (MRCA), also known as the last common ancestor (LCA) or concestor, of a set of organisms is the most recent individual from which all the organisms of the set are descended. The ...
of all known forms of life.


Combinatorial selection of RNA molecules enables in vitro evolution

Experimental methods were invented that allowed investigators to use large, diverse populations of RNA molecules to carry out in vitro molecular experiments that utilized powerful selective replication strategies used by geneticists, and which amount to evolution in the test tube. These experiments have been described using different names, the most common of which are "combinatorial selection", "in vitro selection", and SELEX (for
Systematic Evolution of Ligands by Exponential Enrichment Systematic evolution of ligands by exponential enrichment (SELEX), also referred to as '' in vitro selection'' or '' in vitro evolution'', is a combinatorial chemistry technique in molecular biology for producing oligonucleotides of either single ...
). These experiments have been used for isolating RNA molecules with a wide range of properties, from binding to particular proteins, to catalyzing particular reactions, to binding low molecular weight organic ligands. They have equal applicability to elucidating interactions and mechanisms that are known properties of naturally occurring RNA molecules to isolating RNA molecules with biochemical properties that are not known in nature. In developing in vitro selection technology for RNA, laboratory systems for synthesizing complex populations of RNA molecules were established, and used in conjunction with the selection of molecules with user-specified biochemical activities, and in vitro schemes for RNA replication. These steps can be viewed as (a)
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
, (b) selection, and (c) replication. Together, then, these three processes enable in vitro
molecular evolution Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genet ...
.


2001 – present


Many mobile DNA elements use an RNA intermediate

Transposable genetic elements (transposons) are found which can replicate via transcription into an RNA intermediate which is subsequently converted to DNA by reverse transcriptase. These sequences, many of which are likely related to retroviruses, constitute much of the DNA of the eukaryotic nucleus, especially so in plants. Genomic sequencing shows that retrotransposons make up 36% of the human genome and over half of the genome of major cereal crops (wheat and maize).


Riboswitches bind cellular metabolites and control gene expression

Segments of RNA, typically embedded within the 5′-untranslated region of a vast number of bacterial mRNA molecules, have a profound effect on gene expression through a previously-undiscovered mechanism that does not involve the participation of proteins. In many cases,
riboswitch In molecular biology, a riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. Thus, an mRNA that contains a riboswitch is directly in ...
es change their folded structure in response to environmental conditions (e.g. ambient temperature or concentrations of specific metabolites), and the structural change controls the translation or stability of the mRNA in which the riboswitch is embedded. In this way, gene expression can be dramatically regulated at the post-transcriptional level.


Small RNA molecules regulate gene expression by post-transcriptional gene silencing

Another previously unknown mechanism by which RNA molecules are involved in genetic regulation was discovered in the 1990s. Small RNA molecules termed microRNA (miRNA) and
small interfering RNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA at first non-coding RNA molecules, typically 20-24 (normally 21) base pairs in length, similar to MicroRNA, miRNA, and op ...
(siRNA) are abundant in eukaryotic cells and exert post-transcriptional control over mRNA expression. They function by binding to specific sites within the mRNA and inducing cleavage of the mRNA via a specific silencing-associated RNA degradation pathway.


Noncoding RNA controls epigenetic phenomena

In addition to their well-established roles in translation and splicing, members of noncoding RNA (ncRNA) families have recently been found to function in genome defense and chromosome inactivation. For example,
piwi-interacting RNA Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA, non-coding RNA molecules expressed in animal cells. piRNAs form RNA-protein complexes through interactions with piwi-subfamily Argonaute proteins. These piRNA complexes are ...
s (piRNAs) prevent genome instability in germ line cells, while Xist (X-inactive-specific-transcript) is essential for X-chromosome inactivation in mammals.


Nobel Laureates in RNA biology


References

{{DEFAULTSORT:History Of Rna Biology
RNA Biology ''RNA Biology'' is the leading peer-reviewed scientific journal in the field of ribonucleic acid ( RNA) research. It is indexed for MEDLINE. The editor-in-chief is Renée Schroeder ( University of Vienna). Wikipedia initiative The journal la ...
History of genetics Non-coding RNA RNA