Historical geology
   HOME

TheInfoList



OR:

Historical geology or palaeogeology is a discipline that uses the principles and methods of
geology Geology () is a branch of natural science concerned with Earth and other Astronomical object, astronomical objects, the features or rock (geology), rocks of which it is composed, and the processes by which they change over time. Modern geology ...
to reconstruct the geological history of Earth. Historical geology examines the vastness of geologic time, measured in billions of years, and investigates changes in the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
, gradual and sudden, over this
deep time Deep time is a term introduced and applied by John McPhee to the concept of geologic time in his book ''Basin and Range'' (1981), parts of which originally appeared in the '' New Yorker'' magazine. The philosophical concept of geological time ...
. It focuses on geological processes, such as
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
, that have changed the Earth's surface and subsurface over time and the use of methods including
stratigraphy Stratigraphy is a branch of geology concerned with the study of rock layers ( strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has three related subfields: lithost ...
,
structural geology Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover informati ...
,
paleontology Paleontology (), also spelled palaeontology or palæontology, is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene epoch (roughly 11,700 years before present). It includes the study of fossi ...
, and
sedimentology Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation (erosion and weathering), transport, deposition and diagenesis. Sedimentologists apply their understanding of m ...
to tell the sequence of these events. It also focuses on the
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
of
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energy ...
during different time periods in the
geologic time scale The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochr ...
.


Historical development

During the 17th century,
Nicolas Steno Niels Steensen ( da, Niels Steensen; Latinized to ''Nicolaus Steno'' or ''Nicolaus Stenonius''; 1 January 1638 – 25 November 1686law of superposition The law of superposition is an axiom that forms one of the bases of the sciences of geology, archaeology, and other fields pertaining to geological stratigraphy. In its plainest form, it states that in undeformed stratigraphic sequences, the ...
, the principle of original horizontality, and the principle of lateral continuity. 18th-century geologist
James Hutton James Hutton (; 3 June O.S.172614 June 1726 New Style. – 26 March 1797) was a Scottish geologist, agriculturalist, chemical manufacturer, naturalist and physician. Often referred to as the father of modern geology, he played a key role ...
contributed to an early understanding of the Earth's history by proposing the theory of
uniformitarianism Uniformitarianism, also known as the Doctrine of Uniformity or the Uniformitarian Principle, is the assumption that the same natural laws and processes that operate in our present-day scientific observations have always operated in the universe in ...
, which is now a basic principle in all branches of geology. Uniformitarianism describes an
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
formed by the same natural phenomena that are at work today, the product of slow and continuous geological changes. The theory can be summarized by the phrase "the present is the key to the past." Hutton also described the concept of deep time. The prevailing conceptualization of Earth history in 18th-century Europe, grounded in a literal interpretation of Christian scripture, was that of a young Earth shaped by catastrophic events. Hutton, however, depicted a very old Earth, shaped by slow, continuous change.
Charles Lyell Sir Charles Lyell, 1st Baronet, (14 November 1797 – 22 February 1875) was a Scottish geologist who demonstrated the power of known natural causes in explaining the earth's history. He is best known as the author of ''Principles of Geolo ...
further developed the theory of uniformitarianism in the 19th century. Modern geologists have generally acknowledged that Earth's geological history is a product of both sudden, cataclysmic events (such as meteorite impacts and volcanic eruptions) and gradual processes (such as weathering, erosion, and deposition). The discovery of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
in the late 19th century and the development of
radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
techniques in the 20th century provided a means of deriving
absolute Absolute may refer to: Companies * Absolute Entertainment, a video game publisher * Absolute Radio, (formerly Virgin Radio), independent national radio station in the UK * Absolute Software Corporation, specializes in security and data risk manag ...
ages of events in geological history.


Use and importance

Geology is considered a historical science; accordingly, historical geology plays a prominent role in the field. Historical geology covers much of the same subject matter as physical geology, the study of geological processes and the ways in which they shape the Earth's structure and composition. Historical geology extends physical geology into the past.
Economic geology Economic geology is concerned with earth materials that can be used for economic and/or industrial purposes. These materials include precious and base metals, nonmetallic minerals and construction-grade stone. Economic geology is a subdisciplin ...
, the search for and extraction of
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy b ...
and
raw materials A raw material, also known as a feedstock, unprocessed material, or primary commodity, is a basic material that is used to produce goods, finished goods, energy, or intermediate materials that are feedstock for future finished products. As feeds ...
, is heavily dependent on an understanding of the geological history of an area. Environmental geology, which examines the impacts of
natural hazard A natural hazard is a natural phenomenon that might have a negative effect on humans and other animals, or the environment. Natural hazard events can be classified into two broad categories: geophysical and biological. An example of the distinc ...
s such as
earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s and
volcanism Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a ...
, must rely on a detailed knowledge of geological history.


Methods


Stratigraphy

Layers of rock, or
strata In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as e ...
, represent a
geologic record The geologic record in stratigraphy, paleontology and other natural sciences refers to the entirety of the layers of rock strata. That is, deposits laid down by volcanism or by deposition of sediment derived from weathering detritus (clays, sand ...
of Earth's history. Stratigraphy is the study of strata: their order, position, and age.


Structural geology

Structural geology is concerned with rocks' deformational histories.


Paleontology

Fossils A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
are organic traces of Earth's history. In a historical geology context, paleontological methods can be used to study fossils and their environments, including surrounding rocks, and place them within the geologic time scale.


Sedimentology

Sedimentology is the study of the formation, transport, deposition, and diagenesis of
sediments Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sa ...
.
Sedimentary rocks Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particle ...
, including limestone, sandstone, and shale, serve as a record of Earth's history: they contain fossils and are transformed by geological processes, such as weathering, erosion, and deposition, through deep time.


Relative dating

Historical geology makes use of relative dating in order to establish the sequence of geological events in relation to each another, without determining their specific numerical ages or ranges.


Absolute dating

Absolute dating allows geologists to determine a more precise chronology of geological events, based on numerical ages or ranges. Absolute dating includes the use of
radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
methods, such as
radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was de ...
, potassium–argon dating, and uranium–lead dating.
Luminescence dating Luminescence dating refers to a group of methods of determining how long ago mineral grains were last exposed to sunlight or sufficient heating. It is useful to geologists and archaeologists who want to know when such an event occurred. It uses var ...
,
dendrochronology Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed. As well as dating them, this can give data for dendroclimatology, the study of climate and atm ...
, and amino acid dating are other methods of absolute dating.


Plate tectonics

The theory of plate tectonics explains how the movement of lithospheric plates has structured the Earth throughout its geological history.Levin, Harold L.; King, David T. (2017). ''The Earth Through Time'' (11th ed.). Hoboken, New Jersey: John Wiley & Sons. p. 9. .


Weathering, erosion, and deposition

Weathering Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs '' in situ'' (on site, with little or no movement ...
,
erosion Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transports it to another location where it is deposited. Erosion is d ...
, and
deposition Deposition may refer to: * Deposition (law), taking testimony outside of court * Deposition (politics), the removal of a person of authority from political power * Deposition (university), a widespread initiation ritual for new students practiced f ...
are examples of gradual geological processes, taking place over large sections of the geologic time scale. In the
rock cycle The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditi ...
, rocks are continually broken down, transported, and deposited, cycling through three main rock types:
sedimentary Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
,
metamorphic Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causi ...
, and
igneous Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or ...
.


Paleoclimatology

Paleoclimatology is the study of past climates recorded in geological time.


Brief geological history


External links

Geology - Earth history
, Encyclopedia Britannica
Historical Geology
, OpenGeology.org

, Lecture notes for course at the University of Maryland


Notes

{{DEFAULTSORT:Historical Geology